Difficult instances of the counting problem for 2-quantum-SAT are very atypical

Niel de Beaudrap

CWI, Amsterdam

DIQIP/QALGO joint meeting
14 May 2014
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there *aren’t* states which minimize the energy of each interaction term

- more difficult to study the ground states

Niel de Beaudrap (CWI, Amsterdam)

Difficult instances of #2-QSAT: very atypical

DIQIP/QALGO joint meeting 2 / 23
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there *aren’t* states which minimize the energy of each interaction term
- more difficult to study the ground states

Antiferromagnetic coupling:
\[H = \sum_{a,b} \sigma_a^{(z)} \otimes \sigma_b^{(z)} \]

Local ground states:
\[|\uparrow\downarrow\rangle \text{ and } |\downarrow\uparrow\rangle \]
Frustrated Hamiltonian: one for which there aren’t states which minimize the energy of each interaction term

- more difficult to study the ground states

\[H = \sum_{a,b} \sigma^{(z)}_a \otimes \sigma^{(z)}_b \]

- Antiferromagnetic coupling:

- Local ground states: \(|\uparrow\downarrow\rangle \) and \(|\downarrow\uparrow\rangle \)

Niel de Beaudrap (CWI, Amsterdam)
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there are states which minimize the energy of each interaction term
- more difficult to study the ground states

Antiferromagnetic coupling:
\[H = \sum_{a,b} \sigma_a^{(z)} \otimes \sigma_b^{(z)} \]

Local ground states:
\[|\uparrow\downarrow\rangle \text{ and } |\downarrow\uparrow\rangle \]
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there *aren’t* states which minimize the energy of each interaction term
 - more difficult to study the ground states

Antiferromagnetic coupling:
\[H = \sum_{a,b} \sigma_z^a \otimes \sigma_z^b \]

Local ground states: \(|\uparrow\downarrow\rangle\) and \(|\downarrow\uparrow\rangle\)
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there aren’t states which minimize the energy of each interaction term
 more difficult to study the ground states

Frustration-free Hamiltonian: one for which there are states which minimize the energy of each interaction term
 ground states more easily locally verified

- Ferromagnetic coupling:
 \(H = - \sum_{a,b} \sigma_a^{(z)} \otimes \sigma_b^{(z)} \)

- Local ground states:
 |▲▲\rangle and |▼▼\rangle
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there *aren’t* states which minimize the energy of each interaction term
- more difficult to study the ground states

Frustration-free Hamiltonian: one for which there *are* states which minimize the energy of each interaction term
- ground states more easily locally verified

- Ferromagnetic coupling:
 \[H = - \sum_{a,b} \sigma_a^{(z)} \otimes \sigma_b^{(z)} \]

- Local ground states:
 \[|\uparrow\uparrow\rangle \text{ and } |\downarrow\downarrow\rangle \]
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there *aren’t* states which minimize the energy of each interaction term
- more difficult to study the ground states

Frustration-free Hamiltonian: one for which there *are* states which minimize the energy of each interaction term
- ground states more easily locally verified

- **Ferromagnetic coupling:**
 \[H = - \sum_{a,b} \sigma^{(z)}_a \otimes \sigma^{(z)}_b \]

- **Local ground states:**
 \[|\uparrow\uparrow\rangle \text{ and } |\downarrow\downarrow\rangle \]
preamble: about frustration-freeness

Frustrated Hamiltonian: one for which there *aren’t* states which minimize the energy of each interaction term
- more difficult to study the ground states

Frustration-free Hamiltonian: one for which there *are* states which minimize the energy of each interaction term
- ground states more easily locally verified

- **Ferromagnetic coupling:**
 \[H = - \sum_{a,b} \sigma_a^{(z)} \otimes \sigma_b^{(z)} \]
- **Local ground states:**
 \[|\▲▲\rangle \text{ and } |\▼▼\rangle \]
preamble: frustration-freeness and satisfiability

Consider two-body interactions on spin-1/2 systems (qubits).

\[H = \sum_{\langle a,b \rangle} h_{a,b} \]

In the special case where

\[h_{a,b} = |x\rangle \langle x| \otimes |y\rangle \langle y| \]

for \(x, y \in \{0, 1\} \), and similarly for all terms:

Avoiding local “classical” two-bit configurations is exactly

the classical problem \(2\text{-SAT} \)

Determining whether a two-body Hamiltonian on qubits is

frustration-free is \(2\text{-QSAT} \)

(a quantum generalization which one may study for its own sake)

How difficult are these problems?

Complexity of \(2\text{-SAT} \): in P

Complexity of \(2\text{-QSAT} \): also in P [Bravyi-2006]

(Complexity of \(3\text{-SAT} / 3\text{-QSAT} \) (3-body constraints): . . . very hard.)

Niel de Beaudrap (CWI, Amsterdam)
Consider two-body interactions on spin-1/2 systems (qubits).

\[H = \sum_{\langle a,b \rangle} h_{a,b} \]

In the special case where \(h_{a,b} = |x\rangle\langle x| \otimes |y\rangle\langle y| \)
for \(x, y \in \{0, 1\} \), and similarly for all terms:
minimizing energy akin to avoiding local configuration \(|x\rangle |y\rangle \)

Avoiding local “classical” two-bit configurations is exactly the classical problem \(2\text{-SAT} \).

Determining whether a two-body Hamiltonian on qubits is frustration-free is \(2\text{-QSAT} \), which one may study for its own sake.

How difficult are these problems?

Complexity of \(2\text{-SAT} \): in P

Complexity of \(2\text{-QSAT} \): also in P [Bravyi-2006]

(Complexity of \(3\text{-SAT} \)/\(3\text{-QSAT} \): very hard.)

Difficult instances of \#2\text{-QSAT}: very atypical
preamble: frustration-freeness and satisfiability

Consider two-body interactions on spin-1/2 systems (qubits).

\[H = \sum_{\langle a, b \rangle} h_{a, b} \]

- In the special case where \(h_{a, b} = |x\rangle\langle x| \otimes |y\rangle\langle y| \) for \(x, y \in \{0, 1\} \), and similarly for all terms:
 - minimizing energy akin to avoiding local configuration \(|x\rangle |y\rangle \)

- Avoiding local “classical” two-bit configurations is exactly the classical problem 2-SAT
preamble: frustration-freeness and satisfiability

Consider two-body interactions on spin-1/2 systems (qubits).

\[H = \sum_{\langle a,b \rangle} h_{a,b} \]

- In the special case where \(h_{a,b} = |x\rangle\langle x| \otimes |y\rangle\langle y| \) for \(x, y \in \{0, 1\} \), and similarly for all terms:
 - minimizing energy akin to avoiding local configuration \(|x\rangle |y\rangle \)

- Avoiding local “classical” two-bit configurations is exactly the classical problem 2-SAT

- Determining whether a two-body Hamiltonian on qubits is frustration-free is 2-QSAT
 - (a quantum generalization which one may study for its own sake)
preamble: frustration-freeness and satisfiability

Consider two-body interactions on spin-1/2 systems (qubits).

\[H = \sum_{\langle a,b \rangle} h_{a,b} \]

- In the special case where \(h_{a,b} = |x\rangle \langle x| \otimes |y\rangle \langle y| \)
 for \(x, y \in \{0, 1\} \), and similarly for all terms:
 minimizing energy akin to avoiding local configuration \(|x\rangle |y\rangle \)

- Avoiding local “classical” two-bit configurations is exactly the classical problem \(2\text{-SAT} \)

- Determining whether a two-body Hamiltonian on qubits is frustration-free is \(2\text{-QSAT} \)
 (a quantum generalization which one may study for its own sake)

How difficult are these problems?

- Complexity of \(2\text{-SAT} \): in P
- Complexity of \(2\text{-QSAT} \): also in P [Bravyi-2006]
Consider two-body interactions on spin-1/2 systems (qubits).

\[H = \sum_{\langle a,b \rangle} h_{a,b} \]

- In the special case where \(h_{a,b} = |x\rangle \langle x| \otimes |y\rangle \langle y| \)
 for \(x, y \in \{0, 1\} \), and similarly for all terms:
 minimizing energy akin to avoiding local configuration \(|x\rangle |y\rangle \)

- Avoiding local “classical” two-bit configurations is exactly
 the classical problem \textbf{2-SAT}

- Determining whether a two-body Hamiltonian on qubits is
 frustration-free is \textbf{2-QSAT}
 (a quantum generalization which one may study for its own sake)

How difficult are these problems?

- Complexity of \textbf{2-SAT}: in P
- Complexity of \textbf{2-QSAT}: also in P [Bravyi-2006]
- (Complexity of \textbf{3-SAT/3-QSAT} (3-body constraints): . . . very hard.)
preamble: the counting problem \#2-QSAT

If we actually want to know things about the ground state (e.g. expectation values of observables), we must do more than determine if the Hamiltonian is frustration-free.
preamble: the counting problem #2-QSAT

If we actually want to **know** things about the ground state (*e.g.* expectation values of observables), we must do more than determine if the Hamiltonian is frustration-free.

q. How easily can we compute the *degeneracy* of a frustration-free Hamiltonian?

...necessary in order to characterize the ground-state manifold, if we care about ground states of frustration-free Hamiltonians.
preamble: the counting problem \#2-QSAT

If we actually want to **know** things about the ground state (e.g. expectation values of observables), we must do more than determine if the Hamiltonian is frustration-free.

q. How easily can we compute the *degeneracy* of a frustration-free Hamiltonian?

...necessary in order to characterize the ground-state manifold, if we care about ground states of frustration-free Hamiltonians

- For two-body Hamiltonians on qubits: this is \#2-QSAT
 — the problem of "counting" the number of orthogonal satisfying states for an instance of 2-QSAT
preamble: the counting problem #2-QSAT

If we actually want to know things about the ground state (e.g. expectation values of observables), we must do more than determine if the Hamiltonian is frustration-free.

q. How easily can we compute the degeneracy of a frustration-free Hamiltonian?

... necessary in order to characterize the ground-state manifold, if we care about ground states of frustration-free Hamiltonians

- For two-body Hamiltonians on qubits: this is #2-QSAT — the problem of “counting” the number of orthogonal satisfying states for an instance of 2-QSAT
- Generalizes #2-SAT: counting solutions to an instance of 2-SAT
preamble: the complexity of #2-QSAT

How difficult is it to solve #2-SAT/#2-QSAT?

- Complexity of #2-SAT: #P-complete
 (hard as counting solutions to NP-complete problems)

Entangled avoided configurations?

Product states form a set of measure zero

"entangled constraints" act similarly to a pair of product constraints

More fundamentally: constraints in multiple local bases

Monotonicity seems to be the source of difficulty of #2-SAT.

The sharp decline in difficulty of #2-QSAT provides evidence for this: monotonicity requires a preferred basis.
preamble: the complexity of #2-QSAT

How difficult is it to solve #2-SAT/#2-QSAT?

- Complexity of #2-SAT: \#P-complete
 (hard as counting solutions to \textbf{NP}-complete problems)

- Complexity of #2-QSAT:
 - \#P-hard
 (as #2-SAT ⊂ #2-QSAT)

What causes this disparity in the difficulty of #2-QSAT?
Entangled avoided configurations?

Product states form a set of measure zero

“entangled constraints” act similarly to a pair of product constraints

More fundamentally: constraints in multiple local bases

Monotonicity seems to be the source of difficulty of #2-SAT.
The sharp decline in difficulty of #2-QSAT provides evidence for this: monotonicity requires a preferred basis.
preamble: the complexity of #2-QSAT

How difficult is it to solve #2-SAT/#2-QSAT?

- Complexity of #2-SAT: #P-complete
 (hard as counting solutions to NP-complete problems)

- Complexity of #2-QSAT:
 - #P-hard
 - #P-complete (i.e. “no worse than #P”)
 (as #2-SAT ⊂ #2-QSAT)
 [Ji+Wei+Zeng-2010]
preamble: the complexity of \#2-QSAT

How difficult is it to solve \#2-SAT/\#2-QSAT?

- Complexity of \#2-SAT: \#P-complete
 (hard as counting solutions to NP-complete problems)

- Complexity of \#2-QSAT:
 - \#P-hard
 - \#P-complete (i.e. “no worse than \#P”) [Ji+Wei+Zeng-2010]
 - poly-time, except for a set of measure zero [Laumann et al., 2010]
 [Bravyi+Moore+Russell-2010]
preamble: the complexity of #2-QSAT

How difficult is it to solve #2-SAT/#2-QSAT?

- **Complexity of #2-SAT:** \#P-complete
 (hard as counting solutions to \textbf{NP}-complete problems)

- **Complexity of #2-QSAT:**
 - \#P-hard (as #2-SAT \(\subset\) #2-QSAT)
 - \#P-complete (\textit{i.e.} “no worse than \#P”) \[\text{[Ji+Wei+Zeng-2010]}\]
 - poly-time, except for a set of measure zero \[\text{[Laumann \textit{et al.}, 2010]}\]
 \[\text{[Bravyi+Moore+Russell-2010]}\]

What causes this disparity in the difficulty of #2-QSAT?
preamble: the complexity of \#2-QSAT

How difficult is it to solve \#2-SAT/\#2-QSAT?

- Complexity of \#2-SAT: \#P-complete
 (hard as counting solutions to NP-complete problems)

- Complexity of \#2-QSAT:
 - \#P-hard (as \#2-SAT ⊂ \#2-QSAT)
 - \#P-complete (i.e. “no worse than \#P”) [Ji+Wei+Zeng-2010]
 - poly-time, except for a set of measure zero [Laumann et al., 2010]
 [Bravyi+Moore+Russell-2010]

What causes this disparity in the difficulty of \#2-QSAT?

- **Entangled** avoided configurations? [L&al./BMR-2010]
 - Product states form a set of measure zero
 - “entangled constraints” act similarly to a pair of product constraints
preamble: the complexity of \#2-QSAT

How difficult is it to solve \#2-SAT/\#2-QSAT?

- Complexity of \#2-SAT: \#P-complete
 (hard as counting solutions to \text{NP}-complete problems)

- Complexity of \#2-QSAT:
 - \#P-hard
 - \#P-complete (i.e. “no worse than \#P”) [Ji+Wei+Zeng-2010]
 - poly-time, except for a set of measure zero [Laumann \textit{et al.}, 2010]
 [Bravyi+Moore+Russell-2010]

What causes this disparity in the difficulty of \#2-QSAT?

- **Entangled** avoided configurations? [L&al./BMR-2010]
 - Product states form a set of measure zero
 - “entangled constraints” act similarly to a \textit{pair} of product constraints

- More fundamentally: constraints in \textbf{multiple local bases}
 - \textit{Monotonicity} seems to be the source of difficulty of \#2-SAT.
 - The sharp decline in difficulty of \#2-QSAT provides evidence for this: monotonicity requires a preferred basis.
summary of results

Intuition. “The only families of random \(\#2\text{-QSAT} \) which are ‘hard’ are those which, asymptotically, are broadly similar to hard families of \(\#2\text{-SAT} \).”
summary of results

Intuition. “The only families of random \#2-QSAT which are ‘hard’ are those which, asymptotically, are broadly similar to hard families of \#2-SAT.”

Looking for the boundaries of the hard instances:
- Only allow product constraints:
 - distribution over finite set of constraints \(|\alpha_h\rangle\langle\alpha_h| \otimes |\alpha_j\rangle\langle\alpha_j|\)
 - each \(|\alpha_j\rangle\) selected i.i.d. with probability \(0 \leq q_j \leq 1\)
summary of results

Intuition. “The only families of random $\#^2$-QSAT which are ‘hard’ are those which, asymptotically, are broadly similar to hard families of $\#^2$-SAT.”

Looking for the boundaries of the hard instances:
- Only allow product constraints:
 - distribution over finite set of constraints $|\alpha_h\rangle\langle\alpha_h| \otimes |\alpha_j\rangle\langle\alpha_j|$
 - each $|\alpha_j\rangle$ selected *i.i.d.* with probability $0 \leq q_j \leq 1$
- Monotone $\#^2$-SAT as the extreme case $q = (1, 0, 0, \ldots)$
summary of results

Intuition. “The only families of random **#2-QSAT** which are ‘hard’ are those which, asymptotically, are broadly similar to hard families of **#2-SAT**.”

Looking for the boundaries of the hard instances:

- Only allow product constraints:
 - distribution over finite set of constraints \(|\alpha_h\rangle\langle\alpha_h| \otimes |\alpha_j\rangle\langle\alpha_j|
 - each \(|\alpha_j\rangle\) selected *i.i.d.* with probability \(0 \leq q_j \leq 1\)
- Monotone **#2-SAT** as the extreme case \(q = (1, 0, 0, \ldots)\)
- “Substantially quantum” cases: \(\|q\|_\infty\) bounded well away from 1
summary of results

Intuition. “The only families of random \#2-QSAT which are ‘hard’
are those which, asymptotically, are broadly similar
to hard families of \#2-SAT.”

Looking for the boundaries of the hard instances:

- Only allow product constraints:
 distribution over finite set of constraints $|\alpha_h\rangle\langle\alpha_h| \otimes |\alpha_j\rangle\langle\alpha_j|$
 — each $|\alpha_j\rangle$ selected i.i.d. with probability $0 \leq q_j \leq 1$
- Monotone \#2-SAT as the extreme case $q = (1, 0, 0, \ldots)$
- “Substantially quantum” cases: $\|q\|_\infty$ bounded well away from 1

Let $q = (q_1, q_2, \ldots)$, and consider \#2-QSAT on either
(a) edge-percolated lattices, or
(b) Erdős–Rényi graphs.
summary of results

Intuition. “The only families of random #2-QSAT which are ‘hard’ are those which, asymptotically, are broadly similar to hard families of #2-SAT.”

Looking for the boundaries of the hard instances:
- Only allow product constraints: distribution over finite set of constraints $|\alpha_h\rangle\langle\alpha_h| \otimes |\alpha_j\rangle\langle\alpha_j|$
 — each $|\alpha_j\rangle$ selected *i.i.d.* with probability $0 \leq q_j \leq 1$
- Monotone #2-SAT as the extreme case $q = (1, 0, 0, \ldots)$
- “Substantially quantum” cases: $\|q\|_\infty$ bounded well away from 1

Let $q = (q_1, q_2, \ldots)$, and consider #2-QSAT on either
(a) edge-percolated lattices, or
(b) Erdős–Rényi graphs.
Then as $q \rightarrow 0$, ‘hard’ instances of #2-QSAT become unlikely for any fixed density of interaction terms.
Outline

1. Constructing models of random #2-QSAT
 - Erdős–Rényi graphs and percolated lattices
 - Random instances of 2-QSAT on random graphs
 - Random frustration-free Hamiltonians on random graphs
 - Common features of the interaction graph models

2. Analysis of #2-QSAT on random graphs
 - Effective long-range constraints
 - Onset of frustration in random two-body Hamiltonians on qubits
 - Frozen subsystems in frustration-free models

3. Summary
models of random graphs (part 1)

Prior work on random 2-satisfiability:

- random 2-SAT with uniformly random boolean constraints
 e.g., [Chvátal+Reed, 1992]

- random 2-QSAT with Haar-uniform constraints
 e.g., [Laumann et al., 2010]

Both of these consider randomly constructed examples of 2-SAT/2-QSAT on Erdős–Rényi graphs: graph with \(n\) labelled vertices (\(\sim\) boolean variables/spins) \(m\) edges out of a possible \(\binom{n}{2}\) are selected for inclusion—essentially the same as including edges i.i.d. with probability \(p = \frac{m}{\binom{n}{2}}\) a two-site constraint is associated to each edge.

These graphs have “as little structure as possible”—while perhaps unphysical, this (and prior work) motivates this model.

Difficult instances of #2-QSAT: very atypical
models of random graphs (part 1)

Prior work on random 2-satisfiability:

- random 2-SAT with uniformly random boolean constraints
 \textit{e.g.}, [Chvátal+Reed, 1992]

- random 2-QSAT with Haar-uniform constraints
 \textit{e.g.}, [Laumann \textit{et al.}, 2010]

Both of these consider randomly constructed examples of 2-SAT/2-QSAT on \textit{Erdős–Rényi graphs}:

- graph with \(n \) labelled vertices (\(\sim \) boolean variables / spins)
models of random graphs (part 1)

Prior work on random 2-satisfiability:
- random 2-SAT with uniformly random boolean constraints
 e.g., [Chvátal+Reed, 1992]
- random 2-QSAT with Haar-uniform constraints
 e.g., [Laumann et al., 2010]

Both of these consider randomly constructed examples of 2-SAT/2-QSAT on Erdős–Rényi graphs:
- graph with n labelled vertices (\sim boolean variables / spins)
- m edges out of a possible $\binom{n}{2}$ are selected for inclusion
 — essentially the same as including edges i.i.d. with probability $p = m/\binom{n}{2}$
models of random graphs (part 1)

Prior work on random 2-satisfiability:

- random 2-SAT with uniformly random boolean constraints
 e.g., [Chvátal+Reed, 1992]

- random 2-QSAT with Haar-uniform constraints
 e.g., [Laumann et al., 2010]

Both of these consider randomly constructed examples of 2-SAT/2-QSAT on Erdős–Rényi graphs:

- graph with n labelled vertices (\sim boolean variables / spins)
- m edges out of a possible $\binom{n}{2}$ are selected for inclusion
 — essentially the same as including edges i.i.d. with probability $p = m/\binom{n}{2}$
- a two-site constraint is associated to each edge.
models of random graphs (part 1)

Prior work on random 2-satisfiability:

- random 2-SAT with uniformly random boolean constraints \textit{e.g.}, [Chvátal+Reed, 1992]

- random 2-QSAT with Haar-uniform constraints \textit{e.g.}, [Laumann \textit{et al.}, 2010]

Both of these consider randomly constructed examples of 2-SAT/2-QSAT on \textit{Erdős–Rényi graphs}:

- graph with n labelled vertices (\sim boolean variables / spins)

- m edges out of a possible $\binom{n}{2}$ are selected for inclusion — essentially the same as including edges \textit{i.i.d.} with probability $p = m/\binom{n}{2}$

- a two-site constraint is associated to each edge.

These graphs have “as little structure as possible” — while perhaps unphysical, this (and prior work) motivates this model.
models of random graphs (part 2)

More physically motivated:
Hamiltonians defined on a spin lattice (e.g. square/cubic grids)
models of random graphs (part 2)

More physically motivated:
Hamiltonians defined on a spin lattice (e.g. square/cubic grids)

We consider edge-percolated square/cubic lattice models for 2-QSAT:
 - graph with \(n \) labelled vertices (\(\sim \) spins)
 - labels indicate position in an array of
 dimension either \(\sqrt{n} \times \sqrt{n} \), or \(3\sqrt{n} \times 3\sqrt{n} \times 3\sqrt{n} \)
models of random graphs (part 2)

More physically motivated:
Hamiltonians defined on a spin lattice (e.g. square/cubic grids)

We consider *edge-percolated* square/cubic lattice models for 2-QSAT:
- graph with \(n \) labelled vertices (\(\sim \) spins)
 - labels indicate position in an array of dimension either \(\sqrt{n} \times \sqrt{n} \), or \(3\sqrt{n} \times 3\sqrt{n} \times 3\sqrt{n} \)
- each pair of nearest-neighbors are connected, *i.i.d.* with some probability \(p \)
models of random graphs (part 2)

More physically motivated:
Hamiltonians defined on a spin lattice (e.g. square/cubic grids)

We consider edge-percolated square/cubic lattice models for 2-QSAT:
- graph with \(n \) labelled vertices (\(\sim \) spins)
 - labels indicate position in an array of dimension either \(\sqrt{n} \times \sqrt{n} \), or \(3\sqrt{n} \times 3\sqrt{n} \times 3\sqrt{n} \)
- each pair of nearest-neighbors are connected, \textit{i.i.d.} with some probability \(p \)
- a two-site constraint is associated to each edge.
models of random graphs (part 2)

More physically motivated:
Hamiltonians defined on a spin lattice (e.g. square/cubic grids)

We consider edge-percolated square/cubic lattice models for 2-QSAT:
- graph with n labelled vertices (\(\sim\) spins)
 - labels indicate position in an array of dimension either $\sqrt{n} \times \sqrt{n}$, or $\sqrt[3]{n} \times \sqrt[3]{n} \times \sqrt[3]{n}$
- each pair of nearest-neighbors are connected, \textit{i.i.d.} with some probability p
- a two-site constraint is associated to each edge.

Results for square/cubic lattices will have analogues for other lattices.
random two-body hamiltonians on qubits

How to build a random two-body spin-1/2 Hamiltonian, on n qubits.

1. Choose a random graph model, and a density $\gamma = m/n$ for the interaction graph.
2. Choose a distribution for the constraints.

\rightarrow distribution of n-qubit Hamiltonians depending on γ and q.

Niel de Beaudrap (CWI, Amsterdam) Difficult instances of #2-QSAT: very atypical DIQIP/QALGO joint meeting
How to build a random two-body spin-$1/2$ Hamiltonian, on n qubits.

1. Choose a random graph model, and a density $\gamma = m/n$ for the interaction graph.
2. Choose a distribution for the constraints.

 ▶ Monotone 2-SAT:
 point-mass function on $|0\rangle\langle 0| \otimes |0\rangle\langle 0|$
random two-body hamiltonians on qubits

How to build a random two-body spin-1/2 Hamiltonian, on \(n \) qubits.

1. Choose a random graph model, and a density \(\gamma = m/n \) for the interaction graph.
2. Choose a distribution for the constraints.
 - Monotone 2-SAT:
 point-mass function on \(|0\rangle\langle 0| \otimes |0\rangle\langle 0| \)
 - “Random 2-SAT” — [Chvátal+Reed, 1992]:
 projector \(|a\rangle\langle a| \otimes |a'\rangle\langle a'| \) for \(a, a' \in \{0, 1\} \) uniformly i.i.d.
random two-body hamiltonians on qubits

How to build a random two-body spin-1/2 Hamiltonian, on \(n \) qubits.

1. Choose a random graph model, and a density \(\gamma = m/n \) for the interaction graph.

2. Choose a distribution for the constraints.
 - Monotone 2-SAT:
 point-mass function on \(|0\rangle\langle 0| \otimes |0\rangle\langle 0| \)
 - “Random 2-SAT” — [Chvátal+Reed, 1992]:
 projector \(|a\rangle\langle a| \otimes |a'\rangle\langle a'| \) for \(a, a' \in \{0, 1\} \) uniformly i.i.d.
 - Independent factor product constraints:
 projector \(|\alpha\rangle\langle \alpha| \otimes |\alpha'\rangle\langle \alpha'| \) for \(|\alpha\rangle, |\alpha'\rangle \in \{ |\alpha_1\rangle, |\alpha_2\rangle, \ldots \} \) i.i.d.
 according to \(q = (q_1, q_2, \ldots) \), where \(q_k = \Pr[\alpha = \alpha_k] \)
random two-body hamiltonians on qubits

How to build a random two-body spin-1/2 Hamiltonian, on n qubits.

1. Choose a random graph model, and a density $\gamma = m/n$ for the interaction graph.

2. Choose a distribution for the constraints.
 - Monotone 2-SAT: point-mass function on $|0\rangle\langle 0| \otimes |0\rangle\langle 0|$
 - “Random 2-SAT” — [Chvátal+Reed, 1992]: projector $|a\rangle\langle a| \otimes |a'\rangle\langle a'|$ for $a, a' \in \{0, 1\}$ uniformly i.i.d.
 - Independent factor product constraints: projector $|\alpha\rangle\langle \alpha| \otimes |\alpha'\rangle\langle \alpha'|$ for $|\alpha\rangle, |\alpha'\rangle \in \{|\alpha_1\rangle, |\alpha_2\rangle, \ldots\}$ i.i.d. according to $q = (q_1, q_2, \ldots)$, where $q_k = \Pr[\alpha = \alpha_k]$

3. Repeat until the interaction graph has $m = \gamma n$ edges:
random two-body hamiltonians on qubits

How to build a random two-body spin-1/2 Hamiltonian, on \(n \) qubits.

1. Choose a random graph model, and a density \(\gamma = m/n \) for the interaction graph.

2. Choose a distribution for the constraints.
 - Monotone \(2\text{-SAT} \):
 point-mass function on \(|0\rangle\langle 0| \otimes |0\rangle\langle 0| \)
 - “Random \(2\text{-SAT} \)” — [Chvátal+Reed, 1992]:
 projector \(|a\rangle\langle a| \otimes |a'\rangle\langle a'| \) for \(a, a' \in \{0, 1\} \) uniformly i.i.d.
 - Independent factor product constraints:
 projector \(|\alpha\rangle\langle \alpha| \otimes |\alpha'\rangle\langle \alpha'| \) for \(|\alpha\rangle, |\alpha'\rangle \in \{ |\alpha_1\rangle, |\alpha_2\rangle, \ldots \} \) i.i.d.
 according to \(q = (q_1, q_2, \ldots) \), where \(q_k = \text{Pr}[\alpha = \alpha_k] \)

3. Repeat until the interaction graph has \(m = \gamma n \) edges:
 - Select an edge to add to the interaction graph.
random two-body hamiltonians on qubits

How to build a random two-body spin-1/2 Hamiltonian, on n qubits.

1. Choose a random graph model, and a density $\gamma = m/n$ for the interaction graph.

2. Choose a distribution for the constraints.
 - Monotone 2-SAT: point-mass function on $|0\rangle\langle 0| \otimes |0\rangle\langle 0|$
 - “Random 2-SAT” — [Chvátal+Reed, 1992]: projector $|a\rangle\langle a| \otimes |a'\rangle\langle a'|$ for $a, a' \in \{0, 1\}$ uniformly i.i.d.
 - Independent factor product constraints: projector $|\alpha\rangle\langle \alpha| \otimes |\alpha'\rangle\langle \alpha'|$ for $|\alpha\rangle, |\alpha'\rangle \in \{|\alpha_1\rangle, |\alpha_2\rangle, \ldots\}$ i.i.d.
 according to $q = (q_1, q_2, \ldots)$, where $q_k = \Pr[\alpha = \alpha_k]$

3. Repeat until the interaction graph has $m = \gamma n$ edges:
 - Select an edge to add to the interaction graph.
 - Select an interaction term for that edge, to add to the Hamiltonian.
random two-body hamiltonians on qubits

How to build a random two-body spin-1/2 Hamiltonian, on n qubits.

1. Choose a random graph model, and a density $\gamma = m/n$ for the interaction graph.

2. Choose a distribution for the constraints.
 - Monotone 2-SAT:
 point-mass function on $|0\rangle\langle 0| \otimes |0\rangle\langle 0|$
 - “Random 2-SAT” — [Chvátal+Reed, 1992]:
 projector $|a\rangle\langle a| \otimes |a'\rangle\langle a'|$ for $a, a' \in \{0, 1\}$ uniformly i.i.d.
 - Independent factor product constraints:
 projector $|\alpha\rangle\langle \alpha| \otimes |\alpha'\rangle\langle \alpha'|$ for $|\alpha\rangle, |\alpha'\rangle \in \{ |\alpha_1\rangle, |\alpha_2\rangle, \ldots \}$ i.i.d.
 according to $q = (q_1, q_2, \ldots)$, where $q_k = \Pr[\alpha = \alpha_k]$

3. Repeat until the interaction graph has $m = \gamma n$ edges:
 - Select an edge to add to the interaction graph.
 - Select an interaction term for that edge, to add to the Hamiltonian.

\rightarrow distribution of n-qubit Hamiltonians depending on γ and q.
random *frustration-free* hamiltonians on qubits

If we over-constrain the spin-system, it may change abruptly from being frustration-free to frustrated.

How to build a random *frustration-free* two-body spin-1/2 Hamiltonian on n qubits:

1. Choose a random graph model and a density $\gamma = m/n$.
2. Choose a distribution q for the tensor factors $\{ |\alpha_k\rangle \}$ of the constraints.
3. Repeat until the interaction graph has $m = \gamma n$ edges:
 i. Select an edge to add to the interaction graph.
 ii. Repeatedly sample interaction terms for that edge, until we obtain one which does not frustrate the Hamiltonian when we add it.
random *frustration-free* hamiltonians on qubits

If we over-constrain the spin-system, it may change abruptly from being frustration-free to frustrated.

How to build a random *frustration-free* two-body spin-1/2 Hamiltonian on \(n\) qubits:

1. Choose a random graph model and a density \(\gamma = m/n\).
2. Choose a distribution \(q\) for the tensor factors \(\{|\alpha_k\}\) of the constraints.
random \textit{frustration-free} hamiltonians on qubits

If we over-constrain the spin-system, it may change abruptly from being frustration-free to frustrated.

How to build a random \textit{frustration-free} two-body spin-1/2 Hamiltonian on n qubits:

1. Choose a random graph model and a density $\gamma = m/n$.
2. Choose a distribution \mathbf{q} for the tensor factors $\{ |\alpha_k\rangle \}$ of the constraints.
3. Repeat until the interaction graph has $m = \gamma n$ edges:
 - Select an edge to add to the interaction graph.
random *frustration-free* hamiltonians on qubits

If we over-constrain the spin-system, it may change abruptly from being frustration-free to frustrated.

How to build a random *frustration-free* two-body spin-1/2 Hamiltonian on n qubits:

1. Choose a random graph model and a density $\gamma = m/n$.
2. Choose a distribution \mathbf{q} for the tensor factors $\{|\alpha_k\rangle\}$ of the constraints.
3. Repeat until the interaction graph has $m = \gamma n$ edges:
 i. Select an edge to add to the interaction graph.
 ii. Repeatedly sample interaction terms for that edge, until we obtain one which does not frustrate the Hamiltonian when we add it.
random *frustration-free* hamiltonians on qubits

If we over-constrain the spin-system, it may change abruptly from being frustration-free to frustrated.

How to build a random *frustration-free* two-body spin-1/2 Hamiltonian on \(n \) qubits:

1. Choose a random graph model and a density \(\gamma = m/n \).
2. Choose a distribution \(q \) for the tensor factors \(\{ |\alpha_k\rangle \} \) of the constraints.
3. Repeat until the interaction graph has \(m = \gamma n \) edges:
 - Select an edge to add to the interaction graph.
 - **Repeatedly** sample interaction terms for that edge, until we obtain one which does not frustrate the Hamiltonian when we add it.

→ distribution of frustration-free Hamiltonians depending on \(\gamma \) and \(q \).
how the interaction graphs behave

The complexity of solving \#2-QSAT on these Hamiltonians will be largely (but not completely) governed by the interaction graphs. The following results hold \textit{almost surely as } $n \to \infty$ (that is, probability $1 - o(1/n)$ for a randomly constructed graph):
how the interaction graphs behave

The complexity of solving \#2-QSAT on these Hamiltonians will be largely (but not completely) governed by the interaction graphs.

The following results hold *almost surely* as \(n \to \infty \) (that is, probability \(1 - o(1/n) \) for a randomly constructed graph):

- **Sub-critical graph:** no components of size \(O(n) \) for \(\gamma < \gamma_0 \)

 \(\gamma_0 = \frac{1}{2} \) Erdős–Rényi graphs, \(\gamma_0 = 1 \) square lattices, \(\gamma_0 \approx 0.7464 \) cubic lattices

- **Super-critical graph:** largest component is “complicated” and has size \(O(n) \) for \(\gamma > \gamma_0 \): interesting instances.
how the interaction graphs behave

The complexity of solving \#2-QSAT on these Hamiltonians will be largely (but not completely) governed by the interaction graphs.

The following results hold almost surely as $n \to \infty$ (that is, probability $1 - o(1/n)$ for a randomly constructed graph):

- **Sub-critical graph**: no components of size $O(n)$ for $\gamma < \gamma_0$
 $(\gamma_0 = \frac{1}{2}$ Erdős–Rényi graphs, $\gamma_0 = 1$ square lattices, $\gamma_0 \approx 0.7464$ cubic lattices)
 - Size of the largest component is “small”:
 - Erdős–Rényi: $O(\log n)$ vertices
 - Lattice models: size bounded by any $f \in \omega(1)$
how the interaction graphs behave

The complexity of solving \#2-QSAT on these Hamiltonians will be largely (but not completely) governed by the interaction graphs.

The following results hold almost surely as $n \to \infty$ (that is, probability $1 - o(1/n)$ for a randomly constructed graph):

- **Sub-critical graph:** no components of size $O(n)$ for $\gamma < \gamma_0$ ($\gamma_0 = 1/2$ Erdős–Rényi graphs, $\gamma_0 = 1$ square lattices, $\gamma_0 \approx 0.7464$ cubic lattices)
 - Size of the largest component is “small”:
 - Erdős–Rényi: $O(\log n)$ vertices
 - Lattice models: size bounded by any $f \in \omega(1)$
 - No interesting connected subsystems growing with n
 - Erdős–Rényi: all components are trees, or have one cycle
 - Lattice models: may have multiple cycles, but don’t scale with n
how the interaction graphs behave

The complexity of solving \#2-QSAT on these Hamiltonians will be largely (but not completely) governed by the interaction graphs.

The following results hold \textit{almost surely as } \(n \to \infty \) (that is, probability \(1 - o(1/n) \) for a randomly constructed graph):

- **Sub-critical graph:** no components of size \(O(n) \) for \(\gamma < \gamma_0 \)
 - \(\gamma_0 = \frac{1}{2} \) Erdős–Rényi graphs, \(\gamma_0 = 1 \) square lattices, \(\gamma_0 \approx 0.7464 \) cubic lattices
 - Size of the largest component is “small”:
 - Erdős–Rényi: \(O(\log n) \) vertices
 - Lattice models: size bounded by any \(f \in \omega(1) \)
 - No interesting connected subsystems growing with \(n \)
 - Erdős–Rényi: all components are trees, or have one cycle
 - Lattice models: may have multiple cycles, but don’t scale with \(n \)

\(\implies \) “highly disconnected”, easily solved.
how the interaction graphs behave

The complexity of solving \#2-QSAT on these Hamiltonians will be largely (but not completely) governed by the interaction graphs.

The following results hold \textit{almost surely as }$n \to \infty$\textit{ (that is, probability }$1 - o(1/n)$\textit{ for a randomly constructed graph)}:

- **Sub-critical graph**: no components of size $O(n)$ for $\gamma < \gamma_0$ ($\gamma_0 = \frac{1}{2}$ Erdős–Rényi graphs, $\gamma_0 = 1$ square lattices, $\gamma_0 \approx 0.7464$ cubic lattices)
 - Size of the largest component is “small”:
 - Erdős–Rényi: $O(\log n)$ vertices
 - Lattice models: size bounded by any $f \in \omega(1)$
 - No interesting connected subsystems growing with n
 - Erdős–Rényi: all components are trees, or have one cycle
 - Lattice models: may have multiple cycles, but don’t scale with n
 \implies “highly disconnected”, easily solved.

- **Super-critical graph**: largest component is “complicated” and has size $O(n)$ for $\gamma > \gamma_0$: \textit{interesting} instances.
Outline

1. Constructing models of random \#2-QSAT
 - Erdős–Rényi graphs and percolated lattices
 - Random instances of 2-QSAT on random graphs
 - Random frustration-free Hamiltonians on random graphs
 - Common features of the interaction graph models

2. Analysis of \#2-QSAT on random graphs
 - Effective long-range constraints
 - Onset of frustration in random two-body Hamiltonians on qubits
 - Frozen subsystems in frustration-free models

3. Summary
effective next-nearest-neighbor constraints

- We describe constraints $h_{ab} = |\eta_{ab}\rangle\langle\eta_{ab}|$
in terms of the state $|\eta_{ab}\rangle$ in its support.
effective next-nearest-neighbor constraints

- We describe constraints $h_{ab} = |\eta_{ab}\rangle\langle \eta_{ab}|$
 in terms of the state $|\eta_{ab}\rangle$ in its support.

- Any two constraints $|\eta_{ab}\rangle$ and $|\eta_{bc}\rangle$ (on $\{a, b\}$ and $\{b, c\}$ resp.)
 induce another constraint $|\tilde{\eta}_{ac}\rangle$ on $\{a, c\}$:

 $|\tilde{\eta}_{ac}\rangle \propto \langle \psi^- | \propto \langle 01 |- \langle 10 |$

where

$\langle \psi^- | = \langle 01 | - \langle 10 |$
effective next-nearest-neighbor constraints

- We describe constraints \(h_{ab} = |\eta_{ab}\rangle\langle\eta_{ab}| \) in terms of the state \(|\eta_{ab}\rangle \) in its support.

- Any two constraints \(|\eta_{ab}\rangle \) and \(|\eta_{bc}\rangle \) (on \(\{a, b\} \) and \(\{b, c\} \) resp.) induce another constraint \(|\tilde{\eta}_{ac}\rangle \) on \(\{a, c\} \):

\[
|\tilde{\eta}_{ac}\rangle \propto \langle\psi^-| |\eta_{ab}\rangle |\eta_{bc}\rangle
\]

where
\[
\langle\psi^-| \propto \langle01| - \langle10|
\]

- If \(|\eta_{ab}\rangle = |\alpha_g\rangle |\alpha_h\rangle \) and \(|\eta_{bc}\rangle = |\alpha_j\rangle |\alpha_k\rangle \), then \(|\tilde{\eta}_{ac}\rangle \propto |\alpha_g\rangle |\alpha_k\rangle \)

In particular \(|\tilde{\eta}_{ac}\rangle \neq 0 \) iff \(|\alpha_h\rangle \neq |\alpha_j\rangle \)
effective next-nearest-neighbor constraints

- We describe constraints $h_{ab} = |\eta_{ab}\rangle\langle \eta_{ab}|$
 in terms of the state $|\eta_{ab}\rangle$ in its support.

- Any two constraints $|\eta_{ab}\rangle$ and $|\eta_{bc}\rangle$ (on \{a, b\} and \{b, c\} resp.)
 induce another constraint $|\tilde{\eta}_{ac}\rangle$ on \{a, c\}:

 $$|\tilde{\eta}_{ac}\rangle \propto \langle \psi^- | \propto \langle 01 | - \langle 10 |$$

- If $|\eta_{ab}\rangle = |\alpha_g\rangle |\alpha_h\rangle$ and $|\eta_{bc}\rangle = |\alpha_j\rangle |\alpha_k\rangle$, then $|\tilde{\eta}_{ac}\rangle \propto |\alpha_g\rangle |\alpha_k\rangle$
 In particular $|\tilde{\eta}_{ac}\rangle \neq 0$ iff $|\alpha_h\rangle \neq |\alpha_j\rangle$

- For constraints $|\eta\rangle = |\alpha\rangle |\alpha'\rangle$ whose factors are distributed \textit{i.i.d.}
 according to q, $|\tilde{\eta}_{ac}\rangle \neq 0$ happens with probability

 $$Q := \sum_{k \geq 1} q_k (1 - q_k) = 1 - \sum_{k \geq 1} q_k^2 = 1 - \|q\|_2^2.$$
long-range constraints and effective graph density

- Probability of an effective constraint between next-nearest-neighbors: \(Q = 1 - \|q\|_2^2 \).

N.B. \(Q \to 1 \) as the constraints become less monotone \((q \to 0) \).
Probability of an effective constraint between next-nearest-neighbors: \(Q = 1 - \|q\|^2 \).

N.B. \(Q \to 1 \) as the constraints become less monotone \((q \to 0) \).

Probability of an effective constraint between qubits, arising from a path of length \(\ell \) is \(Q^{\ell-1} \).
long-range constraints and effective graph density

- Probability of an effective constraint between next-nearest-neighbors: \(Q = 1 - \|q\|^2 \).

 N.B. \(Q \to 1 \) as the constraints become less monotone (\(q \to 0 \)).

- Probability of an effective constraint between qubits, arising from a path of length \(\ell \) is \(Q^{\ell-1} \)

Ansatz: long range constraints in a Hamiltonian with density \(\gamma > 0 \) act like connectivity in a random graph with density \(\gamma Q \)
evidence for the “edge-attenuation” ansatz

- Results of [Laumann et al., 2010] are easily adapted to show: when $Q = 1$, then almost surely any Hamiltonian model with a connected graph is frustrated if and only if the graph has more than one cycle.
evidence for the “edge-attenuation” ansatz

- Results of [Laumann et al., 2010] are easily adapted to show: when $Q = 1$, then almost surely any Hamiltonian model with a connected graph is frustrated if and only if the graph has more than one cycle.

- For uniformly random #2-SAT, we have $q = \left(\frac{1}{2}, \frac{1}{2}\right)$
 $$\Rightarrow \|q\|_2^2 = \frac{1}{2}$$
evidence for the “edge-attenuation” ansatz

- Results of [Laumann et al., 2010] are easily adapted to show: when $Q = 1$, then almost surely any Hamiltonian model with a connected graph is frustrated if and only if the graph has more than one cycle.

- For uniformly random #2-SAT, we have $q = \left(\frac{1}{2}, \frac{1}{2}\right)$

 \[\|q\|_2^2 = \frac{1}{2} \]
 \[\implies Q = \frac{1}{2} \]
evidence for the “edge-attenuation” ansatz

- Results of [Laumann et al., 2010] are easily adapted to show: when $Q = 1$, then almost surely any Hamiltonian model with a connected graph is frustrated if and only if the graph has more than one cycle.

- For uniformly random #2-SAT, we have $q = \left(\frac{1}{2}, \frac{1}{2}\right)$

 $\implies \|q\|_2^2 = \frac{1}{2}$

 $\implies Q = \frac{1}{2}$

 \implies density γ *should be* is twice as high as for Haar-random product constraints, before frustration (unsatisfiability) sets in

 ... captures result of [Chvátal+Reed, 1992] on Erdős–Rényi graphs.
evidence for the “edge-attenuation” ansatz

- Results of [Laumann et al., 2010] are easily adapted to show: when $Q = 1$, then almost surely any Hamiltonian model with a connected graph is frustrated if and only if the graph has more than one cycle.

- For uniformly random #2-SAT, we have $q = \left(\frac{1}{2}, \frac{1}{2} \right)$
 \[\Rightarrow \|q\|_2^2 = \frac{1}{2}\]
 \[\Rightarrow Q = \frac{1}{2}\]
 \[\Rightarrow\] density γ *should be* is twice as high as for Haar-random product constraints, before frustration (unsatisfiability) sets in
 \[\ldots\] captures result of [Chvátal+Reed, 1992] on Erdős–Rényi graphs.

- **Claim:** Random Hamiltonians on qubits have a phase transition from unfrustration \rightarrow frustration consistent with this “edge attenuation” ansatz
Erdős–Rényi graphs:

- generalizing [Chvátal+Reed, 1992],
- one may show that “frustrated figure eights” almost surely arise when $\gamma Q > \frac{1}{2}$
Erdős–Rényi graphs:

- generalizing [Chvátal+Reed, 1992], one may show that “frustrated figure eights” almost surely arise when $\gamma Q > \frac{1}{2}$

$$x_0 = x_\ell = x_{2\ell}$$

$$x_{\ell-1} = x_{2\ell-1}$$

$$\Rightarrow$$ hard instances of \#2-QSAT on Erdős–Rényi graphs are vanishingly rare, except when $\gamma \in \left(\frac{1}{2}, \frac{1}{2Q}\right)$.

Percolated lattices:

- pairs of small cycles sharing an edge (“dominoes”) are infinitely abundant in any large component

For $Q > 0$: a constant fraction of these have inconsistent constraints along the three paths $= \Rightarrow$ super-critical random Hamiltonians on percolated lattices are almost surely frustrated.
Erdős–Rényi graphs:

- generalizing [Chvátal+Reed, 1992], one may show that “frustrated figure eights” almost surely arise when $\gamma Q > \frac{1}{2}$

\implies hard instances of #2-QSAT on Erdős–Rényi graphs are vanishingly rare, except when $\gamma \in \left(\frac{1}{2}, \frac{1}{2Q} \right)$.

Percolated lattices:

- pairs of small cycles sharing an edge ("dominoes") are infinitely abundant in any large component

- For $Q > 0$: a constant fraction of these have inconsistent constraints along the three paths between the central vertices
Erdős–Rényi graphs:
- generalizing [Chvátal+Reed, 1992], one may show that “frustrated figure eights” almost surely arise when $\gamma Q > \frac{1}{2}$

\[x_0 = x_\ell = x_{2\ell} \]
\[x_{\ell+1} = x_{2\ell-1} \]
\[\ldots \]
\[x_{\ell} \cdot x_{\ell+1} \]
\[\ldots \]

\[\Rightarrow \text{hard instances of } \#2\text{-QSAT on Erdős–Rényi graphs are vanishingly rare, except when } \gamma \in \left(\frac{1}{2}, \frac{1}{2Q} \right). \]

Percolated lattices:
- pairs of small cycles sharing an edge (“dominoes”) are infinitely abundant in any large component
- For $Q > 0$; a constant fraction of these have inconsistent constraints along the three paths between the central vertices

\[\Rightarrow \text{super-critical random Hamiltonians on percolated lattices are almost surely frustrated.} \]
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of *frustration-free* systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems
- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits

A dense enough frustration-free Hamiltonian will almost surely have a large frozen subsystem, consisting of qubits whose states are fixed by the Hamiltonian.
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of *frustration-free* systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits

![Diagram of a frustrated system with frozen subsystem]
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of *frustration-free* systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of *frustration-free* systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of *frustration-free* systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of frustration-free systems

- When constructing frustration-free models, structures which would have caused frustration instead fix the states of individual qubits

![Diagram of a frustrated system]

Niel de Beaudrap (CWI, Amsterdam) Difficult instances of #2-QSAT: very atypical DIQIP/QALGO joint meeting 18 / 23
frustration-free models

- Frustrated systems are only easy because a single frustration trivializes the counting problem
 - also: frustration is not relevant to the problem of determining degeneracy of *frustration-free* systems

- When constructing frustration-free models, structures which *would have* caused frustration instead fix the states of individual qubits

A dense enough frustration-free Hamiltonian will almost surely have a large **frozen subsystem**, consisting of qubits whose states are fixed by the Hamiltonian
the frozen subgraph as a “random subgraph”

The **frozen subsystems** form a random subgraph of the random interaction graph.

- (Would-be) frustrations — and thus the frozen graph — emerge at the same time that components with multiple cycles emerge in a random graph with density γQ.

Niel de Beaudrap (CWI, Amsterdam) Difficult instances of #2-QSAT: very atypical DIQIP/QALGO joint meeting
the frozen subgraph as a “random subgraph”

The **frozen subsystems** form a random subgraph of the random interaction graph.

- (Would-be) frustrations — and thus the frozen graph — emerge at the same time that components with multiple cycles emerge in a random graph with density γQ.

- The frozen subgraph does not emerge at all until there have been *would-be frustrations* — these seed the growth of the frozen subgraph
the frozen subgraph as a “random subgraph”

The **frozen subsystems** form a random subgraph of the random interaction graph.

- (Would-be) frustrations — and thus the frozen graph — emerge at the same time that components with multiple cycles emerge in a random graph with density γQ.

- The frozen subgraph does not emerge at all until there have been *would-be frustrations* — these seed the growth of the frozen subgraph.

- **Ansatz.** The frozen graph acts like a random graph with some missing components, and edge-density “similar” to γQ.
emergence and growth of a “frozen core”

- A “giant” component of the frozen subgraph (a frozen core) would decouple the Hamiltonian into independent subsystems.
emergence and growth of a “frozen core”

- A “giant” component of the frozen subgraph (a frozen core) would decouple the Hamiltonian into independent subsystems.

- **Open question.** Does the frozen subgraph have a core which grows similarly to the giant component of a random graph with density γQ (where $Q = 1 - \|q\|_2^2$)?

Proposition. The frozen subgraph has a core which grows at least as quickly as the giant component of a random graph with edge density γQ (where $Q = 1 - \|q\|_\infty^2$).

Proof idea.

- $Q_\infty = \min\left(1 - q_j\right)$ is a lower bound on the probability that an edge incident to a frozen spin will fix the spin on the other end.
- Simulate growth of the frozen subgraph within G by adding edges i.i.d. with probability Q_∞.
- Any frozen subsystem of size $\omega\left(\log n\right)$ can only exist within a “giant” frozen component, whose growth is then bounded from below.
emergence and growth of a “frozen core”

- A “giant” component of the frozen subgraph (a frozen core) would decouple the Hamiltonian into independent subsystems.

- **Open question.** Does the frozen subgraph have a core which grows similarly to the giant component of a random graph with density γQ (where $Q = 1 - \|q\|_2^2$)?

- **Proposition.** The frozen subgraph has a core which grows at least as quickly as the giant component of a random graph with edge density γQ_∞ (where $Q_\infty = 1 - \|q\|_\infty$).
emergence and growth of a "frozen core"

- A “giant” component of the frozen subgraph (a **frozen core**) would decouple the Hamiltonian into independent subsystems.

- **Open question.** Does the frozen subgraph have a core which grows similarly to the giant component of a random graph with density γQ (where $Q = 1 - \|q\|_2^2$)?

- **Proposition.** The frozen subgraph has a core which grows **at least** as quickly as the giant component of a random graph with edge density γQ_∞ (where $Q_\infty = 1 - \|q\|_\infty$).

- **Proof idea.**
 - $Q_\infty = \min (1 - q_j)$ is a lower bound on the probability that an edge incident to a frozen spin will fix the spin on the other end.
emergence and growth of a “frozen core”

- A “giant” component of the frozen subgraph (a frozen core) would decouple the Hamiltonian into independent subsystems.

- **Open question.** Does the frozen subgraph have a core which grows similarly to the giant component of a random graph with density γQ (where $Q = 1 - \|q\|_2^2$)?

- **Proposition.** The frozen subgraph has a core which grows at least as quickly as the giant component of a random graph with edge density γQ_∞ (where $Q_\infty = 1 - \|q\|_\infty$).

- **Proof idea.**
 - $Q_\infty = \min (1 - q_j)$ is a lower bound on the probability that an edge incident to a frozen spin will fix the spin on the other end.
 - Simulate growth of the frozen subgraph within G by adding edges i.i.d. with probability Q_∞.

Niel de Beaudrap (CWI, Amsterdam) Difficult instances of #2-QSAT: very atypical DIQIP/QALGO joint meeting 20 / 23
emergence and growth of a “frozen core”

- A “giant” component of the frozen subgraph (a frozen core) would decouple the Hamiltonian into independent subsystems.

- **Open question.** Does the frozen subgraph have a core which grows similarly to the giant component of a random graph with density γQ (where $Q = 1 - \|q\|_2^2$)?

- **Proposition.** The frozen subgraph has a core which grows at least as quickly as the giant component of a random graph with edge density γQ_∞ (where $Q_\infty = 1 - \|q\|_\infty$).

- **Proof idea.**
 - $Q_\infty = \min (1 - q_j)$ is a lower bound on the probability that, that an edge incident to a frozen spin will fix the spin on the other end.
 - Simulate growth of the frozen subgraph within G by adding edges i.i.d. with probability Q_∞.
 - Any frozen subsystem of size $\omega(\log n)$ can only exist within a “giant” frozen component, whose growth is then bounded from below.
removal of the frozen core

As the frozen core blocks interactions between “unfrozen” subsystems, we remove the frozen core from the Hamiltonian without changing the dimension of the ground-state manifold.
removal of the frozen core

As the frozen core blocks interactions between “unfrozen” subsystems, we remove the frozen core from the Hamiltonian without changing the dimension of the ground-state manifold

- **Erdős–Rényi graphs**: has the effect of reducing the graph density to at most $\tilde{\gamma} \leq \gamma e^{1-2\gamma Q_\infty}$
removal of the frozen core

As the frozen core blocks interactions between “unfrozen” subsystems, we remove the frozen core from the Hamiltonian without changing the dimension of the ground-state manifold

- **Erdős–Rényi graphs**: has the effect of reducing the graph density to at most \(\tilde{\gamma} \leq \gamma e^{1-2\gamma Q_\infty} \)

 - As the frozen core grows, effective density of the “unfrozen” Hamiltonian diminishes exponentially
removal of the frozen core

As the frozen core blocks interactions between “unfrozen” subsystems, we remove the frozen core from the Hamiltonian without changing the dimension of the ground-state manifold.

- **Erdős–Rényi graphs:** has the effect of reducing the graph density to at most \(\tilde{\gamma} \leq \gamma e^{1 - 2\gamma Q_\infty} \)
 - As the frozen core grows, effective density of the “unfrozen” Hamiltonian diminishes exponentially.
 - By the time \(2\gamma Q_\infty - \ln(2\gamma) > 1 \), the “unfrozen” Hamiltonian becomes subcritical, and the counting problem becomes tractible.
removal of the frozen core

As the frozen core blocks interactions between “unfrozen” subsystems, we remove the frozen core from the Hamiltonian without changing the dimension of the ground-state manifold

- **Erdős–Rényi graphs**: has the effect of reducing the graph density to at most \(\tilde{\gamma} \leq \gamma e^{1-2\gamma Q_\infty} \)
 - As the frozen core grows, effective density of the “unfrozen” Hamiltonian diminishes exponentially
 - By the time \(2\gamma Q_\infty - \ln(2\gamma) > 1 \), the “unfrozen” Hamiltonian becomes subcritical, and the counting problem becomes tractible
 - As \(q \to 0 \): eventually no room for a “potentially difficult” regime
removal of the frozen core

As the frozen core blocks interactions between “unfrozen” subsystems, we remove the frozen core from the Hamiltonian without changing the dimension of the ground-state manifold

- **Erdős–Rényi graphs:** has the effect of reducing the graph density to at most \(\tilde{\gamma} \leq \gamma e^{1 - 2\gamma Q_\infty} \)
 - As the frozen core grows, effective density of the “unfrozen” Hamiltonian diminishes exponentially
 - By the time \(2\gamma Q_\infty - \ln(2\gamma) > 1 \), the “unfrozen” Hamiltonian becomes subcritical, and the counting problem becomes tractible
 - As \(q \to 0 \): eventually no room for a “potentially difficult” regime

- **Percolated lattices:** For each \(d \in \{2, 3\} \) there is a percolation constant \(0 < p_{\text{fin}} < 1 \) such that if \(Q_\infty > p_{\text{fin}} \), the frozen subgraph almost surely decouples Hamiltonians of *any* edge-density into tractible pieces

 \(p_{\text{fin}} = \frac{1}{2} \) for square lattices; \(p_{\text{fin}} \geq p_c \approx 0.24881 \) for cubic lattices
Outline

1. Constructing models of random #2-QSAT
 - Erdős–Rényi graphs and percolated lattices
 - Random instances of 2-QSAT on random graphs
 - Random frustration-free Hamiltonians on random graphs
 - Common features of the interaction graph models

2. Analysis of #2-QSAT on random graphs
 - Effective long-range constraints
 - Onset of frustration in random two-body Hamiltonians on qubits
 - Frozen subsystems in frustration-free models

3. Summary
#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.
summary

#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.

- Instances with *any* interaction graph, and connected by entangled constraints, are easy.
summary

#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.

- Instances with *any* interaction graph, and connected by entangled constraints, are easy.

- Random instances with product constraints and a random interaction graph (in more than one model) are either easy, atypical for their graph density, or are have a limited range of constraints.

Niel de Beaudrap (CWI, Amsterdam) Difficult instances of #2-QSAT: very atypical DIQIP/QALGO joint meeting 23 / 23
#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.

- Instances with *any* interaction graph, and connected by entangled constraints, are easy.

- Random instances with product constraints and a random interaction graph (in more than one model) are either easy, atypical for their graph density, or are have a limited range of constraints.

 - **Erdős–Rényi interaction graphs** — hard instances only typical for densities $\gamma \in \left(\frac{1}{2}, \frac{1}{2Q}\right)$ for $Q = 1 - \|q\|_2^2$

 - **Percolated lattices** — hard instances never typical

Qualitatively similar results hold for frustration-free instances.

Let $Q_\infty = 1 - \|q\|_\infty$:

 - **Erdős–Rényi interaction graphs** — hard instances only typical for densities $\gamma \geq \frac{1}{2}$ for which $2\gamma Q_\infty - \ln(2\gamma) > 1$

 - **Percolated lattices** — for Q_∞ larger than a fixed constant $p_{\text{fin}} < 1$, hard instances never typical
Summary

#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.

- Instances with *any* interaction graph, and connected by entangled constraints, are easy.
- Random instances with product constraints and a random interaction graph (in more than one model) are either easy, atypical for their graph density, or are have a limited range of constraints.

- **Erdős–Rényi interaction graphs** — hard instances only typical for densities \(\gamma \in \left(\frac{1}{2}, \frac{1}{2Q} \right) \) for \(Q = 1 - \|q\|_2^2 \)
- **Percolated lattices** — hard instances *never* typical

Difficult instances of #2-QSAT: very atypical | DIQIP/QALGO joint meeting | 23 / 23
summary

#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.

- Instances with *any* interaction graph, and connected by entangled constraints, are easy.

- Random instances with product constraints and a random interaction graph (in more than one model) are either easy, atypical for their graph density, or are have a limited range of constraints.

 - **Erdős–Rényi interaction graphs** — hard instances only typical for densities $\gamma \in \left(\frac{1}{2}, \frac{1}{2Q} \right)$ for $Q = 1 - \|q\|_2^2$

 - **Percolated lattices** — hard instances *never* typical

- Qualitatively similar results hold for frustration-free instances. Let $Q_\infty = 1 - \|q\|_\infty$:

#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.

- Instances with *any* interaction graph, and connected by entangled constraints, are easy.

- Random instances with product constraints and a random interaction graph (in more than one model) are either easy, atypical for their graph density, or are have a limited range of constraints.
 - **Erdős–Rényi interaction graphs** — hard instances only typical for densities $\gamma \in \left(\frac{1}{2}, \frac{1}{2Q}\right)$ for $Q = 1 - \|q\|_2^2$.
 - **Percolated lattices** — hard instances *never* typical.

Qualitatively similar results hold for frustration-free instances. Let $Q_\infty = 1 - \|q\|_\infty$:

- **Erdős–Rényi interaction graphs** — hard instances only typical for densities $\gamma \geq \frac{1}{2}$ for which $2\gamma Q_\infty - \ln(2\gamma) > 1$.
summary

#2-QSAT may be hard in the worst case, but the hard instances are specially constructed.

- Instances with *any* interaction graph, and connected by entangled constraints, are easy.

- Random instances with product constraints and a random interaction graph (in more than one model) are either easy, atypical for their graph density, or are have a limited range of constraints.

 - **Erdős–Rényi interaction graphs** — hard instances only typical for densities $\gamma \in \left(\frac{1}{2}, \frac{1}{2Q}\right)$ for $Q = 1 - \|q\|_2^2$

 - **Percolated lattices** — hard instances *never* typical

- Qualitatively similar results hold for frustration-free instances. Let $Q_\infty = 1 - \|q\|_\infty$:

 - **Erdős–Rényi interaction graphs** — hard instances only typical for densities $\gamma \geq \frac{1}{2}$ for which $2\gamma Q_\infty - \ln(2\gamma) > 1$

 - **Percolated lattices** — For Q_∞ larger than a fixed constant $p_{\text{fin}} < 1$, hard instances *never* typical