Publications

Our group’s publications can also be found on Google Scholar.

2022

  1. J. Pauwels, S. Pironio, E. Zambrini Cruzeiro, and A. Tavakoli, Adaptive Advantage in Entanglement-Assisted Communications, (2022).

    arXiv:2203.05372 [quant-ph]

  2. A. Tavakoli, E. Zambrini Cruzeiro, E. Woodhead, and S. Pironio, Informationally Restricted Correlations: a General Framework for Classical and Quantum Systems, Quantum 6, 620 (2022).

    doi:10.22331/q-2022-01-05-620; arXiv:2007.16145 [quant-ph]

2021

  1. A. Tavakoli, J. Pauwels, E. Woodhead, and S. Pironio, Correlations in Entanglement-Assisted Prepare-and-Measure Scenarios, PRX Quantum 2, 040357 (2021).

    doi:10.1103/PRXQuantum.2.040357; arXiv:2103.10748 [quant-ph]

  2. S. Massar and M. Santha, Characterising the Intersection of QMA and CoQMA, Quantum Information Processing 20, 396 (2021).

    doi:10.1007/s11128-021-03326-3; arXiv:2102.03108 [quant-ph]

  3. J. Pauwels, A. Tavakoli, E. Woodhead, and S. Pironio, Entanglement in Prepare-and-Measure Scenarios: Many Questions, a Few Answers, (2021).

    arXiv:2108.00442 [quant-ph]

  4. R. Salazar, M. Kamoń, K. Horodecki, D. Goyeneche, D. Saha, R. Ramanathan, and P. Horodecki, No-Go Theorem for Device-Independent Security In Relativistic Causal Theories, Physical Review Research 3, 033146 (2021).

    doi:10.1103/PhysRevResearch.3.033146; arXiv:1712.01030 [quant-ph]

  5. A. Lupo, L. Butschek, and S. Massar, Photonic Extreme Learning Machine Based on Frequency Multiplexing, Optics Express 29, 28257 (2021).

    doi:10.1364/OE.433535; arXiv:2107.04585 [cs.ET]

  6. M. Masini, S. Pironio, and E. Woodhead, Simple and Practical DIQKD Security Analysis via BB84-Type Uncertainty Relations and Pauli Correlation Constraints, (2021).

    arXiv:2107.08894 [quant-ph]

  7. S. Massar and S. Clemmen, Resource Efficient Single Photon Source Based on Active Frequency Multiplexing, Optics Letters 46, 2832 (2021).

    doi:10.1364/OL.428148; arXiv:2104.08491 [quant-ph]

  8. M. Masini, T. Theurer, and M. B. Plenio, Coherence of Operations and Interferometry, Physical Review A 103, 042426 (2021).

    doi:10.1103/PhysRevA.103.042426; arXiv:2102.04863 [quant-ph]

  9. E. Woodhead, A. Acín, and S. Pironio, Device-Independent Quantum Key Distribution with Asymmetric CHSH Inequalities, Quantum 5, 443 (2021).

    doi:10.22331/q-2021-04-26-443; arXiv:2007.16146 [quant-ph]

  10. K. Reynkens, S. Clemmen, H. Zhao, A. Raza, T. Vanackere, A. Stassen, M. Van Daele, J. Dendooven, and R. Baets, Gold-Induced Photothermal Background in on-Chip Surface Enhanced Stimulated Raman Spectroscopy, Optics Letters 46, 953 (2021).

    doi:10.1364/ol.418527

  11. S. Massar and M. Santha, Total Functions in QMA, Quantum Information Processing 20, 35 (2021).

    doi:10.1007/s11128-020-02959-0; arXiv:1805.00670 [quant-ph]

2020

  1. K. Reynkens, S. Clemmen, A. Raza, H. Zhao, J. S.-D. Peñaranda, C. Detavernier, and R. Baets, Mitigation of Photon Background in Nanoplasmonic All-on-Chip Raman Sensors, Optics Express 28, 33564 (2020).

    doi:10.1364/oe.408638

  2. R. Ramanathan, M. Rosicka, K. Horodecki, S. Pironio, M. Horodecki, and P. Horodecki, Gadget Structures in Proofs of the Kochen-Specker Theorem, Quantum 4, 308 (2020).

    doi:10.22331/q-2020-08-14-308; arXiv:1807.00113 [quant-ph]

  3. L. Butschek, A. Akrout, E. Dimitriadou, M. Haelterman, and S. Massar, Parallel Photonic Reservoir Computing Based on Frequency Multiplexing of Neurons, (2020).

    arXiv:2008.11247 [physics.optics]

  4. Y. Li, H. Zhao, A. Raza, S. Clemmen, and R. Baets, Surface-Enhanced Raman Spectroscopy Based on Plasmonic Slot Waveguides With Free-Space Oblique Illumination, IEEE Journal of Quantum Electronics 56, 1 (2020).

    doi:10.1109/jqe.2019.2946839

2019

  1. D. Rusca, T. van Himbeeck, A. Martin, J. B. Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, Self-Testing Quantum Random-Number Generator Based on An Energy Bound, Physical Review A 100, 062338 (2019).

    doi:10.1103/PhysRevA.100.062338; arXiv:1904.04819 [quant-ph]

  2. J. Pauwels, G. Verschaffelt, S. Massar, and G. Van der Sande, Distributed Kerr Non-Linearity in a Coherent All-Optical Fiber-Ring Reservoir Computer, Frontiers in Physics 7, 138 (2019).

    doi:10.3389/fphy.2019.00138; arXiv:1908.11210 [physics.app-ph]

  3. T. Van Himbeeck, J. B. Brask, S. Pironio, R. Ramanathan, A. B. Sainz, and E. Wolfe, Quantum Violations in the Instrumental Scenario and Their Relations to the Bell Scenario, Quantum 3, 186 (2019).

    doi:10.22331/q-2019-09-16-186; arXiv:1804.04119 [quant-ph]

  4. M. Van Daele, M. B. E. Griffiths, A. Raza, M. M. Minjauw, E. Solano, J.-Y. Feng, R. K. Ramachandran, S. Clemmen, R. Baets, S. T. Barry, C. Detavernier, and J. Dendooven, Near Room Temperature PE-ALD of Nanostructured Gold For Enhanced Raman Scattering, ECS Meeting Abstracts MA2019-02, 1156 (2019).

    doi:10.1149/ma2019-02/24/1156

  5. M. Van Daele, M. B. E. Griffiths, A. Raza, M. M. Minjauw, E. Solano, J.-Y. Feng, R. K. Ramachandran, S. Clemmen, R. Baets, S. T. Barry, C. Detavernier, and J. Dendooven, Plasma-Enhanced Atomic Layer Deposition of Nanostructured Gold Near Room Temperature, ACS Applied Materials & Interfaces 11, 37229 (2019).

    doi:10.1021/acsami.9b10848

  6. A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. K. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, S. M. Garcia-Blanco, D. J. Blumenthal, J. S. Wilkinson, and R. Baets, High Index Contrast Photonic Platforms for on-Chip Raman Spectroscopy, Optics Express 27, 23067 (2019).

    doi:10.1364/oe.27.023067

  7. T. Van Himbeeck and S. Pironio, Correlations and Randomness Generation Based on Energy Constraints, (2019).

    arXiv:1905.09117 [quant-ph]

  8. J. Losada, A. Raza, S. Clemmen, A. Serrano, A. Griol, R. Baets, and A. Martinez, SERS Detection via Individual Bowtie Nanoantennas Integrated in Si3N4 Waveguides, IEEE Journal of Selected Topics in Quantum Electronics 25, 1 (2019).

    doi:10.1109/jstqe.2019.2896200

  9. P. Horodecki and R. Ramanathan, The Relativistic Causality versus No-Signaling Paradigm For Multi-Party Correlations, Nature Communications 10, 1701 (2019).

    doi:10.1038/s41467-019-09505-2; arXiv:1611.06781 [quant-ph]

  10. S. Robertson, C. Ciret, S. Massar, S.-P. Gorza, and R. Parentani, Four-Wave Mixing and Enhanced Analog Hawking Effect in a Nonlinear Optical Waveguide, Physical Review A 99, 043825 (2019).

    doi:10.1103/PhysRevA.99.043825; arXiv:1902.04352 [physics.optics]

  11. A. Hermans, M. Van Daele, J. Dendooven, S. Clemmen, C. Detavernier, and R. Baets, Integrated Silicon Nitride Electro-Optic Modulators With Atomic Layer Deposited Overlays, Optics Letters 44, 1112 (2019).

    doi:10.1364/ol.44.001112

2018

  1. M. C. Tran, R. Ramanathan, M. McKague, D. Kaszlikowski, and T. Paterek, Bell Monogamy Relations in Arbitrary Qubit Networks, Physical Review A 98, 052325 (2018).

    doi:10.1103/PhysRevA.98.052325; arXiv:1801.03071 [quant-ph]

  2. A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, ALD Assisted Nanoplasmonic Slot Waveguide for on-Chip Enhanced Raman Spectroscopy, APL Photonics 3, 116105 (2018).

    doi:10.1063/1.5048266

  3. R. Ramanathan, M. Horodecki, H. Anwer, S. Pironio, K. Horodecki, M. Grünfeld, S. Muhammad, M. Bourennane, and P. Horodecki, Practical No-Signalling Proof Randomness Amplification Using Hardy Paradoxes and Its Experimental Implementation, (2018).

    arXiv:1810.11648 [quant-ph]

  4. B. Bourdoncle, S. Pironio, and A. Acín, Quantifying the Randomness of Copies of Noisy Popescu-Rohrlich Correlations, Physical Review A 98, 042130 (2018).

    doi:10.1103/PhysRevA.98.042130; arXiv:1807.04674 [quant-ph]

  5. M. Winczewski, T. Das, J. H. Selby, K. Horodecki, P. Horodecki, Ł. Pankowski, M. Piani, and R. Ramanathan, Complete Extension: the Non-Signaling Analog of Quantum Purification, (2018).

    arXiv:1810.02222 [quant-ph]

  6. R. Ramanathan, D. Goyeneche, S. Muhammad, P. Mironowicz, M. Grünfeld, M. Bourennane, and P. Horodecki, Steering Is an Essential Feature of Non-Locality in Quantum Theory, Nature Communications 9, 4244 (2018).

    doi:10.1038/s41467-018-06255-5; arXiv:1506.05100 [quant-ph]

  7. C. Bamps, S. Massar, and S. Pironio, Device-Independent Randomness Generation with Sublinear Shared Quantum Resources, Quantum 2, 86 (2018).

    doi:10.22331/q-2018-08-22-86; arXiv:1704.02130 [quant-ph]

  8. R. Ramanathan and P. Mironowicz, Trade-Offs in Multiparty Bell-Inequality Violations in Qubit Networks, Physical Review A 98, 022133 (2018).

    doi:10.1103/PhysRevA.98.022133; arXiv:1704.03790 [quant-ph]

  9. P. Antonik, M. Gulina, J. Pauwels, and S. Massar, Using a Reservoir Computer to Learn Chaotic Attractors, With Applications to Chaos Synchronization and Cryptography, Physical Review E 98, 012215 (2018).

    doi:10.1103/PhysRevE.98.012215; arXiv:1802.02844 [cs.NE]

  10. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, All-Optically Tunable Buffer for Single Photons, Optics Letters 43, 2138 (2018).

    doi:10.1364/ol.43.002138

  11. O. Nieto-Silleras, C. Bamps, J. Silman, and S. Pironio, Device-Independent Randomness Generation from Several Bell Estimators, New Journal of Physics 20, 023049 (2018).

    doi:10.1088/1367-2630/aaaa06; arXiv:1611.00352 [quant-ph]

  12. C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, Frequency Multiplexing for Quasi-Deterministic Heralded Single-Photon Sources, Nature Communications 9, 847 (2018).

    doi:10.1038/s41467-018-03254-4; arXiv:1707.00048 [quant-ph]

2017

  1. T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, Semi-Device-Independent Framework Based on Natural Physical Assumptions, Quantum 1, 33 (2017).

    doi:10.22331/q-2017-11-18-33; arXiv:1612.06828 [quant-ph]

  2. H. Wojewodka, F. G. S. L. Brandao, A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, M. Pawlowski, R. Ramanathan, and M. Stankiewicz, Amplifying the Randomness of Weak Sources Correlated With Devices, IEEE Transactions on Information Theory 63, 7592 (2017).

    doi:10.1109/TIT.2017.2738010; arXiv:1601.06455 [quant-ph]

  3. P. Antonik, F. Duport, M. Hermans, A. Smerieri, M. Haelterman, and S. Massar, Online Training of an Opto-Electronic Reservoir Computer Applied to Real-Time Channel Equalization, IEEE Transactions on Neural Networks and Learning Systems 28, 2686 (2017).

    doi:10.1109/TNNLS.2016.2598655; arXiv:1610.06268 [cs.ET]

  4. A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio, Bell Inequalities Tailored to Maximally Entangled States, Physical Review Letters 119, 040402 (2017).

    doi:10.1103/PhysRevLett.119.040402; arXiv:1607.04578 [quant-ph]

  5. J. Łodyga, W. Kłobus, R. Ramanathan, A. Grudka, M. Horodecki, and R. Horodecki, Measurement Uncertainty from No-Signaling and Nonlocality, Physical Review A 96, 012124 (2017).

    doi:10.1103/PhysRevA.96.012124; arXiv:1702.00078 [quant-ph]

  6. P. Antonik, M. Haelterman, and S. Massar, Brain-Inspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems, Physical Review Applied 7, 054014 (2017).

    doi:10.1103/PhysRevApplied.7.054014; arXiv:1802.02026 [cs.NE]

  7. P. Antonik, M. Hermans, M. Haelterman, and S. Massar, Random Pattern and Frequency Generation Using a Photonic Reservoir Computer with Output Feedback, Neural Processing Letters 47, 1041 (2017).

    doi:10.1007/s11063-017-9628-0; arXiv:2012.10615 [cs.NE]

  8. P. Antonik, M. Haelterman, and S. Massar, Online Training for High-Performance Analogue Readout Layers in Photonic Reservoir Computers, Cognitive Computation 9, 297 (2017).

    doi:10.1007/s12559-017-9459-3; arXiv:2012.10613 [cs.NE]

2016

  1. M. Hermans, P. Antonik, M. Haelterman, and S. Massar, Embodiment of Learning in Electro-Optical Signal Processors, Physical Review Letters 117, 128301 (2016).

    doi:10.1103/PhysRevLett.117.128301; arXiv:1610.06269 [cs.ET]

  2. E. Dremetsika, B. Dlubak, S.-P. Gorza, C. Ciret, M.-B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, Measuring the Nonlinear Refractive Index of Graphene Using the Optical Kerr Effect Method, Optics Letters 41, 3281 (2016).

    doi:10.1364/OL.41.003281; arXiv:1607.00911 [physics.optics]

  3. D. Pitalúa-García, Spacetime-Constrained Oblivious Transfer, Physical Review A 93, 062346 (2016).

    doi:10.1103/PhysRevA.93.062346; arXiv:1512.05649 [quant-ph]

  4. A. Acín, S. Pironio, T. Vértesi, and P. Wittek, Optimal Randomness Certification from One Entangled Bit, Physical Review A 93, 040102 (2016).

    doi:10.1103/PhysRevA.93.040102; arXiv:1505.03837 [quant-ph]

  5. L. P. Thinh, G. de la Torre, J.-D. Bancal, S. Pironio, and V. Scarani, Randomness in Post-Selected Events, New Journal of Physics 18, 035007 (2016).

    doi:10.1088/1367-2630/18/3/035007; arXiv:1506.03953 [quant-ph]

  6. N. Aharon, S. Massar, S. Pironio, and J. Silman, Device-Independent Bit Commitment Based on the CHSH Inequality, New Journal of Physics 18, 025014 (2016).

    doi:10.1088/1367-2630/18/2/025014; arXiv:1511.06283 [quant-ph]

  7. A. Acín, D. Cavalcanti, E. Passaro, S. Pironio, and P. Skrzypczyk, Necessary Detection Efficiencies for Secure Quantum Key Distribution and Bound Randomness, Physical Review A 93, 012319 (2016).

    doi:10.1103/PhysRevA.93.012319; arXiv:1505.00053 [quant-ph]

2015

  1. E. Woodhead and S. Pironio, Secrecy in Prepare-and-Measure Clauser-Horne-Shimony-Holt Tests with a Qubit Bound, Physical Review Letters 115, 150501 (2015).

    doi:10.1103/PhysRevLett.115.150501; arXiv:1507.02889 [quant-ph]

  2. S. Pironio, Random ‘Choices’ and the Locality Loophole, (2015).

    arXiv:1510.00248 [quant-ph]

  3. S. Massar, S. Pironio, and D. Pitalúa-García, Hyperdense Coding and Superadditivity of Classical Capacities in Hypersphere Theories, New Journal of Physics 17, 113002 (2015).

    doi:10.1088/1367-2630/17/11/113002; arXiv:1504.05147 [quant-ph]

  4. S. Massar, P. Spindel, A. F. Varón, and C. Wunderlich, Investigating the Emergence of Time in Stationary States with Trapped Ions, Physical Review A 92, 030102 (2015).

    doi:10.1103/PhysRevA.92.030102; arXiv:1410.6683 [gr-qc]

  5. C. Bamps and S. Pironio, Sum-of-Squares Decompositions for a Family Of Clauser-Horne-Shimony-Holt-like Inequalities and Their Application to Self-Testing, Physical Review A 91, 052111 (2015).

    doi:10.1103/PhysRevA.91.052111; arXiv:1504.06960 [quant-ph]

  6. S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf, Exponential Lower Bounds for Polytopes in Combinatorial Optimization, Journal of the ACM 62, 1 (2015).

    doi:10.1145/2716307; arXiv:1111.0837 [math.CO]

  7. Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, and S. Massar, High-Performance Photonic Reservoir Computer Based on a Coherently Driven Passive Cavity, Optica 2, 438 (2015).

    doi:10.1364/OPTICA.2.000438; arXiv:1501.03024 [physics.optics]

2014

  1. R. Duncan and S. Perdrix, Pivoting Makes the ZX-Calculus Complete for Real Stabilizers, in Proceedings of the 10th International Workshop on Quantum Physics and Logic, Castelldefels (Barcelona), Spain, 17th To 19th July 2013, edited by B. Coecke and M. Hoban, Vol. 171 (Open Publishing Association, 2014), pp. 50–62.

    doi:10.4204/EPTCS.171.5; arXiv:1307.7048 [quant-ph]

  2. R. Duncan and M. Lucas, Verifying the Steane Code with Quantomatic, in Proceedings of the 10th International Workshop on Quantum Physics and Logic, Castelldefels (Barcelona), Spain, 17th To 19th July 2013, edited by B. Coecke and M. Hoban, Vol. 171 (Open Publishing Association, 2014), pp. 33–49.

    doi:10.4204/EPTCS.171.4; arXiv:1306.4532 [quant-ph]

  3. S. Fiorini, S. Massar, M. K. Patra, and H. R. Tiwary, Generalized Probabilistic Theories and Conic Extensions Of Polytopes, Journal of Physics A: Mathematical and Theoretical 48, 025302 (2014).

    doi:10.1088/1751-8113/48/2/025302; arXiv:1310.4125 [quant-ph]

  4. S. Pironio, All Clauser–Horne–Shimony–Holt Polytopes, Journal of Physics A: Mathematical and Theoretical 47, 424020 (2014).

    doi:10.1088/1751-8113/47/42/424020; arXiv:1402.6914 [quant-ph]

  5. E. Woodhead, Tight Asymptotic Key Rate for the Bennett-Brassard 1984 Protocol with Local Randomization and Device Imprecisions, Physical Review A 90, 022306 (2014).

    doi:10.1103/PhysRevA.90.022306; arXiv:1405.5625 [quant-ph]

  6. F. Duport, A. Akrout, A. Smerieri, M. Haelterman, and S. Massar, Analog Input Layer for Optical Reservoir Computers, (2014).

    arXiv:1406.3238 [cs.ET]

  7. L. Olislager, E. Woodhead, K. Phan Huy, J.-M. Merolla, P. Emplit, and S. Massar, Creating and Manipulating Entangled Optical Qubits in The Frequency Domain, Physical Review A 89, 052323 (2014).

    doi:10.1103/PhysRevA.89.052323; arXiv:1403.0805 [quant-ph]

  8. S. Massar and M. K. Patra, Information and Communication in Polygon Theories, Physical Review A 89, 052124 (2014).

    doi:10.1103/PhysRevA.89.052124; arXiv:1403.2509 [quant-ph]

  9. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell Nonlocality, Reviews of Modern Physics 86, 419 (2014).

    doi:10.1103/RevModPhys.86.419; arXiv:1303.2849 [quant-ph]

  10. O. Nieto-Silleras, S. Pironio, and J. Silman, Using Complete Measurement Statistics for Optimal Device-Independent Randomness Evaluation, New Journal of Physics 16, 013035 (2014).

    doi:10.1088/1367-2630/16/1/013035; arXiv:1309.3930 [quant-ph]

  11. A. Kent, S. Massar, and J. Silman, Secure and Robust Transmission and Verification of Unknown Quantum States in Minkowski Space, Scientific Reports 4, 3901 (2014).

    doi:10.1038/srep03901; arXiv:1208.0745 [quant-ph]

2013

  1. M. F. Ezerman, S. Jitman, S. Ling, and D. V. Pasechnik, CSS-Like Constructions of Asymmetric Quantum Codes, IEEE Transactions on Information Theory 59, 6732 (2013).

    doi:10.1109/TIT.2013.2272575; arXiv:1207.6512 [cs.IT]

  2. M. K. Patra, L. Olislager, F. Duport, J. Safioui, S. Pironio, and S. Massar, Experimental Refutation of a Class of ψ-Epistemic Models, Physical Review A 88, 032112 (2013).

    doi:10.1103/PhysRevA.88.032112; arXiv:1306.0414 [quant-ph]

  3. S. Pironio, L. Masanes, A. Leverrier, and A. Acín, Security of Device-Independent Quantum Key Distribution In the Bounded-Quantum-Storage Model, Physical Review X 3, 031007 (2013).

    doi:10.1103/PhysRevX.3.031007; arXiv:1211.1402 [quant-ph]

  4. M. K. Patra, S. Pironio, and S. Massar, No-Go Theorems for ψ-Epistemic Models Based on a Continuity Assumption, Physical Review Letters 111, 090402 (2013).

    doi:10.1103/PhysRevLett.111.090402; arXiv:1211.1179 [quant-ph]

  5. J.-D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Definitions of Multipartite Nonlocality, Physical Review A 88, 014102 (2013).

    doi:10.1103/PhysRevA.88.014102; arXiv:1112.2626 [quant-ph]

  6. E. Woodhead, Quantum Cloning Bound and Application to Quantum Key Distribution, Physical Review A 88, 012331 (2013).

    doi:10.1103/PhysRevA.88.012331; arXiv:1303.4821 [quant-ph]

  7. L. Olislager, J. Safioui, S. Clemmen, K. Phan Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, Silicon-on-Insulator Integrated Source Of Polarization-Entangled Photons, Optics Letters 38, 1960 (2013).

    doi:10.1364/OL.38.001960; arXiv:1304.0642 [quant-ph]

  8. M. Massar and S. Massar, Mean-Field Theory of Echo State Networks, Physical Review E 87, 042809 (2013).

    doi:10.1103/PhysRevE.87.042809; arXiv:1210.8260 [nlin.CD]

  9. E. Woodhead and S. Pironio, Effects of Preparation and Measurement Misalignments on The Security of the Bennett-Brassard 1984 Quantum-Key-Distribution Protocol, Physical Review A 87, 032315 (2013).

    doi:10.1103/PhysRevA.87.032315; arXiv:1209.6479 [quant-ph]

  10. J. Silman, S. Pironio, and S. Massar, Device-Independent Randomness Generation in the Presence Of Weak Cross-Talk, Physical Review Letters 110, 100504 (2013).

    doi:10.1103/PhysRevLett.110.100504; arXiv:1211.5921 [quant-ph]

  11. M. Navascués, A. García-Sáez, A. Acín, S. Pironio, and M. B. Plenio, A Paradox in Bosonic Energy Computations via Semidefinite Programming Relaxations, New Journal of Physics 15, 023026 (2013).

    doi:10.1088/1367-2630/15/2/023026; arXiv:1203.3777 [quant-ph]

  12. S. Pironio and S. Massar, Security of Practical Private Randomness Generation, Physical Review A 87, 012336 (2013).

    doi:10.1103/PhysRevA.87.012336; arXiv:1111.6056 [quant-ph]

  13. E. Woodhead, C. C. W. Lim, and S. Pironio, Semi-Device-Independent QKD Based on BB84 and a CHSH-Type Estimation, in Theory of Quantum Computation, Communication, And Cryptography, Vol. 7582 (Springer, Berlin, Heidelberg, 2013), pp. 107–115.

    doi:10.1007/978-3-642-35656-8_9

2012

  1. J.-D. Bancal, S. Pironio, A. Acín, Y.-C. Liang, V. Scarani, and N. Gisin, Quantum Non-Locality Based on Finite-Speed Causal Influences Leads to Superluminal Signalling, Nature Physics 8, 867 (2012).

    doi:10.1038/nphys2460; arXiv:1110.3795 [quant-ph]

  2. A. Smerieri, F. Duport, Y. Paquot, B. Schrauwen, M. Haelterman, and S. Massar, Analog Readout for Optical Reservoir Computers, in Advances in Neural Information Processing Systems 25 (NIPS 2012), edited by P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Vol. 25 (Curran Associates, Inc., 2012), pp. 953–961.

    https://proceedings.neurips.cc/paper/2012/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html; arXiv:1209.3129 [cs.ET]

  3. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, All-Optical Reservoir Computing, Optics Express 20, 22783 (2012).

    doi:10.1364/OE.20.022783; arXiv:1207.1619 [physics.optics]

  4. S. Clemmen, A. Perret, J. Safioui, W. Bogaerts, R. Baets, S.-P. Gorza, P. Emplit, and S. Massar, Low-Power Inelastic Light Scattering at Small Detunings In Silicon Wire Waveguides at Telecom Wavelengths, Journal of the Optical Society of America B 29, 1977 (2012).

    doi:10.1364/JOSAB.29.001977; arXiv:1101.5841 [quant-ph]

  5. B. Coecke, R. Duncan, A. Kissinger, and Q. Wang, Strong Complementarity and Non-Locality in Categorical Quantum Mechanics, in 2012 27th Annual IEEE Symposium on Logic in Computer Science (IEEE, 2012), pp. 245–254.

    doi:10.1109/LICS.2012.35; arXiv:1203.4988 [quant-ph]

  6. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, Z-Scan Measurement of the Nonlinear Refractive Index Of Graphene, Optics Letters 37, 1856 (2012).

    doi:10.1364/OL.37.001856; arXiv:1203.5527 [physics.optics]

  7. L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. Phan Huy, and J.-M. Merolla, Implementing Two-Photon Interference in the Frequency Domain with Electro-Optic Phase Modulators, New Journal of Physics 14, 043015 (2012).

    doi:10.1088/1367-2630/14/4/043015; arXiv:1107.5519 [quant-ph]

  8. C. Branciard, D. Rosset, N. Gisin, and S. Pironio, Bilocal versus Nonbilocal Correlations In Entanglement-Swapping Experiments, Physical Review A 85, 032119 (2012).

    doi:10.1103/PhysRevA.85.032119; arXiv:1112.4502 [quant-ph]

  9. A. Acín, S. Massar, and S. Pironio, Randomness versus Nonlocality and Entanglement, Physical Review Letters 108, 100402 (2012).

    doi:10.1103/PhysRevLett.108.100402; arXiv:1107.2754 [quant-ph]

  10. R. Duncan, A Graphical Approach to Measurement-Based Quantum Computing, (2012).

    arXiv:1203.6242 [quant-ph]

  11. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, Optoelectronic Reservoir Computing, Scientific Reports 2, 287 (2012).

    doi:10.1038/srep00287; arXiv:1111.7219 [cs.ET]

  12. M. K. Patra and R. van der Meyden, Consistent Assignment of Quantum Probabilities, Journal of Physics A: Mathematical and Theoretical 45, 075304 (2012).

    doi:10.1088/1751-8113/45/7/075304; arXiv:1109.1763 [quant-ph]

  13. M. Navascués, S. Pironio, and A. Acín, SDP Relaxations for Non-Commutative Polynomial Optimization, in Handbook on Semidefinite, Conic and Polynomial Optimization, edited by M. F. Anjos and J. B. Lasserre, Vol. 166 (Springer US, 2012), pp. 601–634.

    doi:10.1007/978-1-4614-0769-0_21

2011

  1. Y. Strauss, J. Silman, S. Machnes, and L. P. Horwitz, Study of a Self-Adjoint Operator Indicating the Direction Of Time within Standard Quantum Mechanics, Comptes Rendus Mathematique 349, 1117 (2011).

    doi:10.1016/j.crma.2011.09.007; arXiv:1101.3969 [quant-ph]

  2. S. Massar and S. Popescu, Estimating Preselected and Postselected Ensembles, Physical Review A 84, 052106 (2011).

    doi:10.1103/PhysRevA.84.052106; arXiv:1106.0405 [quant-ph]

  3. J. Silman, A. Chailloux, N. Aharon, I. Kerenidis, S. Pironio, and S. Massar, Fully Distrustful Quantum Bit Commitment and Coin Flipping, Physical Review Letters 106, 220501 (2011).

    doi:10.1103/PhysRevLett.106.220501; arXiv:1101.5086 [quant-ph]

  4. J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Pironio, Device-Independent Witnesses of Genuine Multipartite Entanglement, Physical Review Letters 106, 250404 (2011).

    doi:10.1103/PhysRevLett.106.250404; arXiv:1102.0197 [quant-ph]

  5. B. Coecke and R. Duncan, Interacting Quantum Observables: Categorical Algebra And Diagrammatics, New Journal of Physics 13, 043016 (2011).

    doi:10.1088/1367-2630/13/4/043016; arXiv:0906.4725 [quant-ph]

  6. L. Masanes, S. Pironio, and A. Acín, Secure Device-Independent Quantum Key Distribution With Causally Independent Measurement Devices, Nature Communications 2, 238 (2011).

    doi:10.1038/ncomms1244; arXiv:1009.1567 [quant-ph]

  7. Y. Strauss, J. Silman, S. Machnes, and L. P. Horwitz, Transition Decomposition of Quantum Mechanical Evolution, International Journal of Theoretical Physics 50, 2179 (2011).

    doi:10.1007/s10773-011-0689-y; arXiv:1101.4180 [quant-ph]

  8. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, On-Chip Parametric Amplification with 265 DB Gain At Telecommunication Wavelengths Using CMOS-Compatible Hydrogenated Amorphous Silicon Waveguides, Optics Letters 36, 552 (2011).

    doi:10.1364/OL.36.000552; arXiv:1102.1026 [physics.optics]

  9. S. Pironio, J.-D. Bancal, and V. Scarani, Extremal Correlations of the Tripartite No-Signaling Polytope, Journal of Physics A: Mathematical and Theoretical 44, 065303 (2011).

    doi:10.1088/1751-8113/44/6/065303; arXiv:1101.2477 [quant-ph]

2010

  1. N. Aharon, S. Massar, and J. Silman, Family of Loss-Tolerant Quantum Coin-Flipping Protocols, Physical Review A 82, 052307 (2010).

    doi:10.1103/PhysRevA.82.052307; arXiv:1006.1121 [quant-ph]

  2. S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, P. Emplit, and S. Massar, Generation of Correlated Photons in Hydrogenated Amorphous-Silicon Waveguides, Optics Letters 35, 3483 (2010).

    doi:10.1364/OL.35.003483; arXiv:1102.1030 [quant-ph]

  3. N. Gisin, S. Pironio, and N. Sangouard, Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier, Physical Review Letters 105, 070501 (2010).

    doi:10.1103/PhysRevLett.105.070501; arXiv:1003.0635 [quant-ph]

  4. J.-D. Bancal, N. Gisin, and S. Pironio, Looking for Symmetric Bell Inequalities, Journal of Physics A: Mathematical and Theoretical 43, 385303 (2010).

    doi:10.1088/1751-8113/43/38/385303; arXiv:1004.4146 [quant-ph]

  5. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. Phan Huy, Frequency-Bin Entangled Photons, Physical Review A 82, 013804 (2010).

    doi:10.1103/PhysRevA.82.013804; arXiv:0910.1325 [quant-ph]

  6. M. L. Almeida, J.-D. Bancal, N. Brunner, A. Acín, N. Gisin, and S. Pironio, Guess Your Neighbor’s Input: A Multipartite Nonlocal Game with No Quantum Advantage, Physical Review Letters 104, 230404 (2010).

    doi:10.1103/PhysRevLett.104.230404; arXiv:1003.3844 [quant-ph]

  7. S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random Numbers Certified by Bell’s Theorem, Nature 464, 1021 (2010).

    doi:10.1038/nature09008; arXiv:0911.3427 [quant-ph]

  8. C. Branciard, N. Gisin, and S. Pironio, Characterizing the Nonlocal Correlations Created Via Entanglement Swapping, Physical Review Letters 104, 170401 (2010).

    doi:10.1103/PhysRevLett.104.170401; arXiv:0911.1314 [quant-ph]

  9. S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random Numbers Certified by Bell’s Theorem, Nature 464, 1021 (2010).

    doi:10.1038/nature09008; arXiv:0911.3427 [quant-ph]

  10. N. Aharon and J. Silman, Quantum Dice Rolling: a Multi-Outcome Generalization Of Quantum Coin Flipping, New Journal of Physics 12, 033027 (2010).

    doi:10.1088/1367-2630/12/3/033027; arXiv:0909.4186 [quant-ph]

  11. H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocality and Communication Complexity, Reviews of Modern Physics 82, 665 (2010).

    doi:10.1103/RevModPhys.82.665; arXiv:0907.3584 [quant-ph]

  12. S. Pironio, M. Navascués, and A. Acín, Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables, SIAM Journal on Optimization 20, 2157 (2010).

    doi:10.1137/090760155; arXiv:0903.4368 [math.OC]

2009

  1. P. van der Gulik, S. Massar, D. Gilis, H. Buhrman, and M. Rooman, The First Peptides: The Evolutionary Transition Between Prebiotic Amino Acids and Early Proteins, Journal of Theoretical Biology 261, 531 (2009).

    doi:10.1016/j.jtbi.2009.09.004; arXiv:0909.2832 [q-bio.BM]

  2. C.-E. Bardyn, T. C. H. Liew, S. Massar, M. McKague, and V. Scarani, Device-Independent State Estimation Based on Bell’s Inequalities, Physical Review A 80, 062327 (2009).

    doi:10.1103/PhysRevA.80.062327; arXiv:0907.2170 [quant-ph]

  3. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, Continuous Wave Photon Pair Generation In Silicon-on-Insulator Waveguides and Ring Resonators, Optics Express 17, 16558 (2009).

    doi:10.1364/OE.17.016558; arXiv:0906.4688 [quant-ph]

  4. S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-Independent Quantum Key Distribution Secure Against Collective Attacks, New Journal of Physics 11, 045021 (2009).

    doi:10.1088/1367-2630/11/4/045021; arXiv:0903.4460 [quant-ph]

2008

  1. A. T. Nguyen, J. Frison, K. Phan Huy, and S. Massar, Experimental Quantum Tossing of a Single Coin, New Journal of Physics 10, 083037 (2008).

    doi:10.1088/1367-2630/10/8/083037; arXiv:0804.4411 [quant-ph]

  2. S. Massar and P. Spindel, Uncertainty Relation for the Discrete Fourier Transform, Physical Review Letters 100, 190401 (2008).

    doi:10.1103/PhysRevLett.100.190401; arXiv:0710.0723 [quant-ph]

2007

  1. S. Massar, Uncertainty Relations for Positive-Operator-Valued Measures, Physical Review A 76, 042114 (2007).

    doi:10.1103/PhysRevA.76.042114; arXiv:quant-ph/0703036

  2. E. Brainis, S. Clemmen, and S. Massar, Spontaneous Growth of Raman Stokes and Anti-Stokes Waves In Fibers, Optics Letters 32, 2819 (2007).

    doi:10.1364/OL.32.002819; arXiv:0705.1274 [physics.optics]

  3. S. Massar and S. Popescu, Reducing Polarization Mode Dispersion with Controlled Polarization Rotations, New Journal of Physics 9, 158 (2007).

    doi:10.1088/1367-2630/9/6/158; arXiv:physics/0606028

  4. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-Independent Security of Quantum Cryptography Against Collective Attacks, Physical Review Letters 98, 230501 (2007).

    doi:10.1103/PhysRevLett.98.230501; arXiv:quant-ph/0702152

2006

  1. S. Massar and P. Spindel, Einstein-Podolsky-Rosen Correlations between Two Uniformly Accelerated Oscillators, Physical Review D 74, 085031 (2006).

    doi:10.1103/PhysRevD.74.085031; arXiv:hep-th/0606174

  2. A. Acín, S. Massar, and S. Pironio, Efficient Quantum Key Distribution Secure Against No-Signalling Eavesdroppers, New Journal of Physics 8, 126 (2006).

    doi:10.1088/1367-2630/8/8/126; arXiv:quant-ph/0605246

  3. H. Buhrman, P. Høyer, H. Röhrig, and S. Massar, Multipartite Nonlocal Quantum Correlations Resistant To Imperfections, Physical Review A 73, 012321 (2006).

    doi:10.1103/PhysRevA.73.012321; arXiv:quant-ph/0410139

2005

  1. D. Amans, E. Brainis, and S. Massar, Higher Order Harmonics of Modulational Instability, Physical Review E 72, 066617 (2005).

    doi:10.1103/PhysRevE.72.066617; arXiv:physics/0507189

  2. H. Buhrman and S. Massar, Causality and Tsirelson’s Bounds, Physical Review A 72, 052103 (2005).

    doi:10.1103/PhysRevA.72.052103; arXiv:quant-ph/0409066

  3. S. Popescu, B. Groisman, and S. Massar, Lower Bound on the Number of Toffoli Gates in a Classical Reversible Circuit through Quantum Information Concepts, Physical Review Letters 95, 120503 (2005).

    doi:10.1103/PhysRevLett.95.120503; arXiv:quant-ph/0407035

  4. G. Ivanyos, S. Massar, and A. B. Nagy, Quantum Computing on Lattices Using Global Two-Qubit Gates, Physical Review A 72, 022339 (2005).

    doi:10.1103/PhysRevA.72.022339; arXiv:quant-ph/0502142

  5. D. Collins, L. Diósi, N. Gisin, S. Massar, and S. Popescu, Quantum Gloves: Quantum States That Encode as Much As Possible Chirality and Nothing Else, Physical Review A 72, 022304 (2005).

    doi:10.1103/PhysRevA.72.022304; arXiv:quant-ph/0409221

  6. N. Gisin, N. Linden, S. Massar, and S. Popescu, Error Filtration and Entanglement Purification for Quantum Communication, Physical Review A 72, 012338 (2005).

    doi:10.1103/PhysRevA.72.012338; arXiv:quant-ph/0407021

  7. L.-P. Lamoureux, E. Brainis, N. J. Cerf, P. Emplit, M. Haelterman, and S. Massar, Experimental Error Filtration for Quantum Communication Over Highly Noisy Channels, Physical Review Letters 94, 230501 (2005).

    doi:10.1103/PhysRevLett.94.230501; arXiv:quant-ph/0407031

  8. N. J. Cerf, N. Gisin, S. Massar, and S. Popescu, Simulating Maximal Quantum Entanglement Without Communication, Physical Review Letters 94, 220403 (2005).

    doi:10.1103/PhysRevLett.94.220403; arXiv:quant-ph/0410027

  9. D. Amans, E. Brainis, M. Haelterman, P. Emplit, and S. Massar, Vector Modulation Instability Induced by Vacuum Fluctuations in Highly Birefringent Fibers in the Anomalous-Dispersion Regime, Optics Letters 30, 1051 (2005).

    doi:10.1364/OL.30.001051; arXiv:physics/0502130

  10. S. Massar and S. Popescu, Measurement of the Total Energy of an Isolated System by An Internal Observer, Physical Review A 71, 042106 (2005).

    doi:10.1103/PhysRevA.71.042106; arXiv:quant-ph/0412079

  11. N. S. Jones, N. Linden, and S. Massar, Extent of Multiparticle Quantum Nonlocality, Physical Review A 71, 042329 (2005).

    doi:10.1103/PhysRevA.71.042329; arXiv:quant-ph/0407018

  12. L. P. Lamoureux, E. Brainis, D. Amans, J. Barrett, and S. Massar, Provably Secure Experimental Quantum Bit-String Generation, Physical Review Letters 94, 050503 (2005).

    doi:10.1103/PhysRevLett.94.050503; arXiv:quant-ph/0408121

2022

  1. J. Pauwels, S. Pironio, E. Zambrini Cruzeiro, and A. Tavakoli, Adaptive Advantage in Entanglement-Assisted Communications, (2022).

    arXiv:2203.05372 [quant-ph]

  2. A. Tavakoli, E. Zambrini Cruzeiro, E. Woodhead, and S. Pironio, Informationally Restricted Correlations: a General Framework for Classical and Quantum Systems, Quantum 6, 620 (2022).

    doi:10.22331/q-2022-01-05-620; arXiv:2007.16145 [quant-ph]

2021

  1. A. Tavakoli, J. Pauwels, E. Woodhead, and S. Pironio, Correlations in Entanglement-Assisted Prepare-and-Measure Scenarios, PRX Quantum 2, 040357 (2021).

    doi:10.1103/PRXQuantum.2.040357; arXiv:2103.10748 [quant-ph]

  2. S. Massar and M. Santha, Characterising the Intersection of QMA and CoQMA, Quantum Information Processing 20, 396 (2021).

    doi:10.1007/s11128-021-03326-3; arXiv:2102.03108 [quant-ph]

  3. J. Pauwels, A. Tavakoli, E. Woodhead, and S. Pironio, Entanglement in Prepare-and-Measure Scenarios: Many Questions, a Few Answers, (2021).

    arXiv:2108.00442 [quant-ph]

  4. R. Salazar, M. Kamoń, K. Horodecki, D. Goyeneche, D. Saha, R. Ramanathan, and P. Horodecki, No-Go Theorem for Device-Independent Security In Relativistic Causal Theories, Physical Review Research 3, 033146 (2021).

    doi:10.1103/PhysRevResearch.3.033146; arXiv:1712.01030 [quant-ph]

  5. M. Masini, S. Pironio, and E. Woodhead, Simple and Practical DIQKD Security Analysis via BB84-Type Uncertainty Relations and Pauli Correlation Constraints, (2021).

    arXiv:2107.08894 [quant-ph]

  6. M. Masini, T. Theurer, and M. B. Plenio, Coherence of Operations and Interferometry, Physical Review A 103, 042426 (2021).

    doi:10.1103/PhysRevA.103.042426; arXiv:2102.04863 [quant-ph]

  7. E. Woodhead, A. Acín, and S. Pironio, Device-Independent Quantum Key Distribution with Asymmetric CHSH Inequalities, Quantum 5, 443 (2021).

    doi:10.22331/q-2021-04-26-443; arXiv:2007.16146 [quant-ph]

  8. S. Massar and M. Santha, Total Functions in QMA, Quantum Information Processing 20, 35 (2021).

    doi:10.1007/s11128-020-02959-0; arXiv:1805.00670 [quant-ph]

2020

  1. R. Ramanathan, M. Rosicka, K. Horodecki, S. Pironio, M. Horodecki, and P. Horodecki, Gadget Structures in Proofs of the Kochen-Specker Theorem, Quantum 4, 308 (2020).

    doi:10.22331/q-2020-08-14-308; arXiv:1807.00113 [quant-ph]

2019

  1. D. Rusca, T. van Himbeeck, A. Martin, J. B. Brask, W. Shi, S. Pironio, N. Brunner, and H. Zbinden, Self-Testing Quantum Random-Number Generator Based on An Energy Bound, Physical Review A 100, 062338 (2019).

    doi:10.1103/PhysRevA.100.062338; arXiv:1904.04819 [quant-ph]

  2. T. Van Himbeeck, J. B. Brask, S. Pironio, R. Ramanathan, A. B. Sainz, and E. Wolfe, Quantum Violations in the Instrumental Scenario and Their Relations to the Bell Scenario, Quantum 3, 186 (2019).

    doi:10.22331/q-2019-09-16-186; arXiv:1804.04119 [quant-ph]

  3. T. Van Himbeeck and S. Pironio, Correlations and Randomness Generation Based on Energy Constraints, (2019).

    arXiv:1905.09117 [quant-ph]

  4. P. Horodecki and R. Ramanathan, The Relativistic Causality versus No-Signaling Paradigm For Multi-Party Correlations, Nature Communications 10, 1701 (2019).

    doi:10.1038/s41467-019-09505-2; arXiv:1611.06781 [quant-ph]

2018

  1. M. C. Tran, R. Ramanathan, M. McKague, D. Kaszlikowski, and T. Paterek, Bell Monogamy Relations in Arbitrary Qubit Networks, Physical Review A 98, 052325 (2018).

    doi:10.1103/PhysRevA.98.052325; arXiv:1801.03071 [quant-ph]

  2. R. Ramanathan, M. Horodecki, H. Anwer, S. Pironio, K. Horodecki, M. Grünfeld, S. Muhammad, M. Bourennane, and P. Horodecki, Practical No-Signalling Proof Randomness Amplification Using Hardy Paradoxes and Its Experimental Implementation, (2018).

    arXiv:1810.11648 [quant-ph]

  3. B. Bourdoncle, S. Pironio, and A. Acín, Quantifying the Randomness of Copies of Noisy Popescu-Rohrlich Correlations, Physical Review A 98, 042130 (2018).

    doi:10.1103/PhysRevA.98.042130; arXiv:1807.04674 [quant-ph]

  4. M. Winczewski, T. Das, J. H. Selby, K. Horodecki, P. Horodecki, Ł. Pankowski, M. Piani, and R. Ramanathan, Complete Extension: the Non-Signaling Analog of Quantum Purification, (2018).

    arXiv:1810.02222 [quant-ph]

  5. R. Ramanathan, D. Goyeneche, S. Muhammad, P. Mironowicz, M. Grünfeld, M. Bourennane, and P. Horodecki, Steering Is an Essential Feature of Non-Locality in Quantum Theory, Nature Communications 9, 4244 (2018).

    doi:10.1038/s41467-018-06255-5; arXiv:1506.05100 [quant-ph]

  6. C. Bamps, S. Massar, and S. Pironio, Device-Independent Randomness Generation with Sublinear Shared Quantum Resources, Quantum 2, 86 (2018).

    doi:10.22331/q-2018-08-22-86; arXiv:1704.02130 [quant-ph]

  7. R. Ramanathan and P. Mironowicz, Trade-Offs in Multiparty Bell-Inequality Violations in Qubit Networks, Physical Review A 98, 022133 (2018).

    doi:10.1103/PhysRevA.98.022133; arXiv:1704.03790 [quant-ph]

  8. O. Nieto-Silleras, C. Bamps, J. Silman, and S. Pironio, Device-Independent Randomness Generation from Several Bell Estimators, New Journal of Physics 20, 023049 (2018).

    doi:10.1088/1367-2630/aaaa06; arXiv:1611.00352 [quant-ph]

2017

  1. T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, Semi-Device-Independent Framework Based on Natural Physical Assumptions, Quantum 1, 33 (2017).

    doi:10.22331/q-2017-11-18-33; arXiv:1612.06828 [quant-ph]

  2. H. Wojewodka, F. G. S. L. Brandao, A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki, M. Pawlowski, R. Ramanathan, and M. Stankiewicz, Amplifying the Randomness of Weak Sources Correlated With Devices, IEEE Transactions on Information Theory 63, 7592 (2017).

    doi:10.1109/TIT.2017.2738010; arXiv:1601.06455 [quant-ph]

  3. A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio, Bell Inequalities Tailored to Maximally Entangled States, Physical Review Letters 119, 040402 (2017).

    doi:10.1103/PhysRevLett.119.040402; arXiv:1607.04578 [quant-ph]

  4. J. Łodyga, W. Kłobus, R. Ramanathan, A. Grudka, M. Horodecki, and R. Horodecki, Measurement Uncertainty from No-Signaling and Nonlocality, Physical Review A 96, 012124 (2017).

    doi:10.1103/PhysRevA.96.012124; arXiv:1702.00078 [quant-ph]

2016

  1. D. Pitalúa-García, Spacetime-Constrained Oblivious Transfer, Physical Review A 93, 062346 (2016).

    doi:10.1103/PhysRevA.93.062346; arXiv:1512.05649 [quant-ph]

  2. A. Acín, S. Pironio, T. Vértesi, and P. Wittek, Optimal Randomness Certification from One Entangled Bit, Physical Review A 93, 040102 (2016).

    doi:10.1103/PhysRevA.93.040102; arXiv:1505.03837 [quant-ph]

  3. L. P. Thinh, G. de la Torre, J.-D. Bancal, S. Pironio, and V. Scarani, Randomness in Post-Selected Events, New Journal of Physics 18, 035007 (2016).

    doi:10.1088/1367-2630/18/3/035007; arXiv:1506.03953 [quant-ph]

  4. N. Aharon, S. Massar, S. Pironio, and J. Silman, Device-Independent Bit Commitment Based on the CHSH Inequality, New Journal of Physics 18, 025014 (2016).

    doi:10.1088/1367-2630/18/2/025014; arXiv:1511.06283 [quant-ph]

  5. A. Acín, D. Cavalcanti, E. Passaro, S. Pironio, and P. Skrzypczyk, Necessary Detection Efficiencies for Secure Quantum Key Distribution and Bound Randomness, Physical Review A 93, 012319 (2016).

    doi:10.1103/PhysRevA.93.012319; arXiv:1505.00053 [quant-ph]

2015

  1. E. Woodhead and S. Pironio, Secrecy in Prepare-and-Measure Clauser-Horne-Shimony-Holt Tests with a Qubit Bound, Physical Review Letters 115, 150501 (2015).

    doi:10.1103/PhysRevLett.115.150501; arXiv:1507.02889 [quant-ph]

  2. S. Pironio, Random ‘Choices’ and the Locality Loophole, (2015).

    arXiv:1510.00248 [quant-ph]

  3. S. Massar, S. Pironio, and D. Pitalúa-García, Hyperdense Coding and Superadditivity of Classical Capacities in Hypersphere Theories, New Journal of Physics 17, 113002 (2015).

    doi:10.1088/1367-2630/17/11/113002; arXiv:1504.05147 [quant-ph]

  4. S. Massar, P. Spindel, A. F. Varón, and C. Wunderlich, Investigating the Emergence of Time in Stationary States with Trapped Ions, Physical Review A 92, 030102 (2015).

    doi:10.1103/PhysRevA.92.030102; arXiv:1410.6683 [gr-qc]

  5. C. Bamps and S. Pironio, Sum-of-Squares Decompositions for a Family Of Clauser-Horne-Shimony-Holt-like Inequalities and Their Application to Self-Testing, Physical Review A 91, 052111 (2015).

    doi:10.1103/PhysRevA.91.052111; arXiv:1504.06960 [quant-ph]

  6. S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf, Exponential Lower Bounds for Polytopes in Combinatorial Optimization, Journal of the ACM 62, 1 (2015).

    doi:10.1145/2716307; arXiv:1111.0837 [math.CO]

2014

  1. R. Duncan and S. Perdrix, Pivoting Makes the ZX-Calculus Complete for Real Stabilizers, in Proceedings of the 10th International Workshop on Quantum Physics and Logic, Castelldefels (Barcelona), Spain, 17th To 19th July 2013, edited by B. Coecke and M. Hoban, Vol. 171 (Open Publishing Association, 2014), pp. 50–62.

    doi:10.4204/EPTCS.171.5; arXiv:1307.7048 [quant-ph]

  2. R. Duncan and M. Lucas, Verifying the Steane Code with Quantomatic, in Proceedings of the 10th International Workshop on Quantum Physics and Logic, Castelldefels (Barcelona), Spain, 17th To 19th July 2013, edited by B. Coecke and M. Hoban, Vol. 171 (Open Publishing Association, 2014), pp. 33–49.

    doi:10.4204/EPTCS.171.4; arXiv:1306.4532 [quant-ph]

  3. S. Fiorini, S. Massar, M. K. Patra, and H. R. Tiwary, Generalized Probabilistic Theories and Conic Extensions Of Polytopes, Journal of Physics A: Mathematical and Theoretical 48, 025302 (2014).

    doi:10.1088/1751-8113/48/2/025302; arXiv:1310.4125 [quant-ph]

  4. S. Pironio, All Clauser–Horne–Shimony–Holt Polytopes, Journal of Physics A: Mathematical and Theoretical 47, 424020 (2014).

    doi:10.1088/1751-8113/47/42/424020; arXiv:1402.6914 [quant-ph]

  5. E. Woodhead, Tight Asymptotic Key Rate for the Bennett-Brassard 1984 Protocol with Local Randomization and Device Imprecisions, Physical Review A 90, 022306 (2014).

    doi:10.1103/PhysRevA.90.022306; arXiv:1405.5625 [quant-ph]

  6. L. Olislager, E. Woodhead, K. Phan Huy, J.-M. Merolla, P. Emplit, and S. Massar, Creating and Manipulating Entangled Optical Qubits in The Frequency Domain, Physical Review A 89, 052323 (2014).

    doi:10.1103/PhysRevA.89.052323; arXiv:1403.0805 [quant-ph]

  7. S. Massar and M. K. Patra, Information and Communication in Polygon Theories, Physical Review A 89, 052124 (2014).

    doi:10.1103/PhysRevA.89.052124; arXiv:1403.2509 [quant-ph]

  8. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell Nonlocality, Reviews of Modern Physics 86, 419 (2014).

    doi:10.1103/RevModPhys.86.419; arXiv:1303.2849 [quant-ph]

  9. O. Nieto-Silleras, S. Pironio, and J. Silman, Using Complete Measurement Statistics for Optimal Device-Independent Randomness Evaluation, New Journal of Physics 16, 013035 (2014).

    doi:10.1088/1367-2630/16/1/013035; arXiv:1309.3930 [quant-ph]

  10. A. Kent, S. Massar, and J. Silman, Secure and Robust Transmission and Verification of Unknown Quantum States in Minkowski Space, Scientific Reports 4, 3901 (2014).

    doi:10.1038/srep03901; arXiv:1208.0745 [quant-ph]

2013

  1. M. F. Ezerman, S. Jitman, S. Ling, and D. V. Pasechnik, CSS-Like Constructions of Asymmetric Quantum Codes, IEEE Transactions on Information Theory 59, 6732 (2013).

    doi:10.1109/TIT.2013.2272575; arXiv:1207.6512 [cs.IT]

  2. M. K. Patra, L. Olislager, F. Duport, J. Safioui, S. Pironio, and S. Massar, Experimental Refutation of a Class of ψ-Epistemic Models, Physical Review A 88, 032112 (2013).

    doi:10.1103/PhysRevA.88.032112; arXiv:1306.0414 [quant-ph]

  3. S. Pironio, L. Masanes, A. Leverrier, and A. Acín, Security of Device-Independent Quantum Key Distribution In the Bounded-Quantum-Storage Model, Physical Review X 3, 031007 (2013).

    doi:10.1103/PhysRevX.3.031007; arXiv:1211.1402 [quant-ph]

  4. M. K. Patra, S. Pironio, and S. Massar, No-Go Theorems for ψ-Epistemic Models Based on a Continuity Assumption, Physical Review Letters 111, 090402 (2013).

    doi:10.1103/PhysRevLett.111.090402; arXiv:1211.1179 [quant-ph]

  5. J.-D. Bancal, J. Barrett, N. Gisin, and S. Pironio, Definitions of Multipartite Nonlocality, Physical Review A 88, 014102 (2013).

    doi:10.1103/PhysRevA.88.014102; arXiv:1112.2626 [quant-ph]

  6. E. Woodhead, Quantum Cloning Bound and Application to Quantum Key Distribution, Physical Review A 88, 012331 (2013).

    doi:10.1103/PhysRevA.88.012331; arXiv:1303.4821 [quant-ph]

  7. E. Woodhead and S. Pironio, Effects of Preparation and Measurement Misalignments on The Security of the Bennett-Brassard 1984 Quantum-Key-Distribution Protocol, Physical Review A 87, 032315 (2013).

    doi:10.1103/PhysRevA.87.032315; arXiv:1209.6479 [quant-ph]

  8. J. Silman, S. Pironio, and S. Massar, Device-Independent Randomness Generation in the Presence Of Weak Cross-Talk, Physical Review Letters 110, 100504 (2013).

    doi:10.1103/PhysRevLett.110.100504; arXiv:1211.5921 [quant-ph]

  9. M. Navascués, A. García-Sáez, A. Acín, S. Pironio, and M. B. Plenio, A Paradox in Bosonic Energy Computations via Semidefinite Programming Relaxations, New Journal of Physics 15, 023026 (2013).

    doi:10.1088/1367-2630/15/2/023026; arXiv:1203.3777 [quant-ph]

  10. S. Pironio and S. Massar, Security of Practical Private Randomness Generation, Physical Review A 87, 012336 (2013).

    doi:10.1103/PhysRevA.87.012336; arXiv:1111.6056 [quant-ph]

  11. E. Woodhead, C. C. W. Lim, and S. Pironio, Semi-Device-Independent QKD Based on BB84 and a CHSH-Type Estimation, in Theory of Quantum Computation, Communication, And Cryptography, Vol. 7582 (Springer, Berlin, Heidelberg, 2013), pp. 107–115.

    doi:10.1007/978-3-642-35656-8_9

2012

  1. J.-D. Bancal, S. Pironio, A. Acín, Y.-C. Liang, V. Scarani, and N. Gisin, Quantum Non-Locality Based on Finite-Speed Causal Influences Leads to Superluminal Signalling, Nature Physics 8, 867 (2012).

    doi:10.1038/nphys2460; arXiv:1110.3795 [quant-ph]

  2. B. Coecke, R. Duncan, A. Kissinger, and Q. Wang, Strong Complementarity and Non-Locality in Categorical Quantum Mechanics, in 2012 27th Annual IEEE Symposium on Logic in Computer Science (IEEE, 2012), pp. 245–254.

    doi:10.1109/LICS.2012.35; arXiv:1203.4988 [quant-ph]

  3. L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. Phan Huy, and J.-M. Merolla, Implementing Two-Photon Interference in the Frequency Domain with Electro-Optic Phase Modulators, New Journal of Physics 14, 043015 (2012).

    doi:10.1088/1367-2630/14/4/043015; arXiv:1107.5519 [quant-ph]

  4. C. Branciard, D. Rosset, N. Gisin, and S. Pironio, Bilocal versus Nonbilocal Correlations In Entanglement-Swapping Experiments, Physical Review A 85, 032119 (2012).

    doi:10.1103/PhysRevA.85.032119; arXiv:1112.4502 [quant-ph]

  5. A. Acín, S. Massar, and S. Pironio, Randomness versus Nonlocality and Entanglement, Physical Review Letters 108, 100402 (2012).

    doi:10.1103/PhysRevLett.108.100402; arXiv:1107.2754 [quant-ph]

  6. R. Duncan, A Graphical Approach to Measurement-Based Quantum Computing, (2012).

    arXiv:1203.6242 [quant-ph]

  7. M. K. Patra and R. van der Meyden, Consistent Assignment of Quantum Probabilities, Journal of Physics A: Mathematical and Theoretical 45, 075304 (2012).

    doi:10.1088/1751-8113/45/7/075304; arXiv:1109.1763 [quant-ph]

  8. M. Navascués, S. Pironio, and A. Acín, SDP Relaxations for Non-Commutative Polynomial Optimization, in Handbook on Semidefinite, Conic and Polynomial Optimization, edited by M. F. Anjos and J. B. Lasserre, Vol. 166 (Springer US, 2012), pp. 601–634.

    doi:10.1007/978-1-4614-0769-0_21

2011

  1. Y. Strauss, J. Silman, S. Machnes, and L. P. Horwitz, Study of a Self-Adjoint Operator Indicating the Direction Of Time within Standard Quantum Mechanics, Comptes Rendus Mathematique 349, 1117 (2011).

    doi:10.1016/j.crma.2011.09.007; arXiv:1101.3969 [quant-ph]

  2. S. Massar and S. Popescu, Estimating Preselected and Postselected Ensembles, Physical Review A 84, 052106 (2011).

    doi:10.1103/PhysRevA.84.052106; arXiv:1106.0405 [quant-ph]

  3. J. Silman, A. Chailloux, N. Aharon, I. Kerenidis, S. Pironio, and S. Massar, Fully Distrustful Quantum Bit Commitment and Coin Flipping, Physical Review Letters 106, 220501 (2011).

    doi:10.1103/PhysRevLett.106.220501; arXiv:1101.5086 [quant-ph]

  4. J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Pironio, Device-Independent Witnesses of Genuine Multipartite Entanglement, Physical Review Letters 106, 250404 (2011).

    doi:10.1103/PhysRevLett.106.250404; arXiv:1102.0197 [quant-ph]

  5. B. Coecke and R. Duncan, Interacting Quantum Observables: Categorical Algebra And Diagrammatics, New Journal of Physics 13, 043016 (2011).

    doi:10.1088/1367-2630/13/4/043016; arXiv:0906.4725 [quant-ph]

  6. L. Masanes, S. Pironio, and A. Acín, Secure Device-Independent Quantum Key Distribution With Causally Independent Measurement Devices, Nature Communications 2, 238 (2011).

    doi:10.1038/ncomms1244; arXiv:1009.1567 [quant-ph]

  7. Y. Strauss, J. Silman, S. Machnes, and L. P. Horwitz, Transition Decomposition of Quantum Mechanical Evolution, International Journal of Theoretical Physics 50, 2179 (2011).

    doi:10.1007/s10773-011-0689-y; arXiv:1101.4180 [quant-ph]

  8. S. Pironio, J.-D. Bancal, and V. Scarani, Extremal Correlations of the Tripartite No-Signaling Polytope, Journal of Physics A: Mathematical and Theoretical 44, 065303 (2011).

    doi:10.1088/1751-8113/44/6/065303; arXiv:1101.2477 [quant-ph]

2010

  1. N. Aharon, S. Massar, and J. Silman, Family of Loss-Tolerant Quantum Coin-Flipping Protocols, Physical Review A 82, 052307 (2010).

    doi:10.1103/PhysRevA.82.052307; arXiv:1006.1121 [quant-ph]

  2. N. Gisin, S. Pironio, and N. Sangouard, Proposal for Implementing Device-Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier, Physical Review Letters 105, 070501 (2010).

    doi:10.1103/PhysRevLett.105.070501; arXiv:1003.0635 [quant-ph]

  3. J.-D. Bancal, N. Gisin, and S. Pironio, Looking for Symmetric Bell Inequalities, Journal of Physics A: Mathematical and Theoretical 43, 385303 (2010).

    doi:10.1088/1751-8113/43/38/385303; arXiv:1004.4146 [quant-ph]

  4. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. Phan Huy, Frequency-Bin Entangled Photons, Physical Review A 82, 013804 (2010).

    doi:10.1103/PhysRevA.82.013804; arXiv:0910.1325 [quant-ph]

  5. M. L. Almeida, J.-D. Bancal, N. Brunner, A. Acín, N. Gisin, and S. Pironio, Guess Your Neighbor’s Input: A Multipartite Nonlocal Game with No Quantum Advantage, Physical Review Letters 104, 230404 (2010).

    doi:10.1103/PhysRevLett.104.230404; arXiv:1003.3844 [quant-ph]

  6. S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random Numbers Certified by Bell’s Theorem, Nature 464, 1021 (2010).

    doi:10.1038/nature09008; arXiv:0911.3427 [quant-ph]

  7. C. Branciard, N. Gisin, and S. Pironio, Characterizing the Nonlocal Correlations Created Via Entanglement Swapping, Physical Review Letters 104, 170401 (2010).

    doi:10.1103/PhysRevLett.104.170401; arXiv:0911.1314 [quant-ph]

  8. S. Pironio, A. Acín, S. Massar, A. B. de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random Numbers Certified by Bell’s Theorem, Nature 464, 1021 (2010).

    doi:10.1038/nature09008; arXiv:0911.3427 [quant-ph]

  9. N. Aharon and J. Silman, Quantum Dice Rolling: a Multi-Outcome Generalization Of Quantum Coin Flipping, New Journal of Physics 12, 033027 (2010).

    doi:10.1088/1367-2630/12/3/033027; arXiv:0909.4186 [quant-ph]

  10. H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocality and Communication Complexity, Reviews of Modern Physics 82, 665 (2010).

    doi:10.1103/RevModPhys.82.665; arXiv:0907.3584 [quant-ph]

  11. S. Pironio, M. Navascués, and A. Acín, Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables, SIAM Journal on Optimization 20, 2157 (2010).

    doi:10.1137/090760155; arXiv:0903.4368 [math.OC]

2009

  1. C.-E. Bardyn, T. C. H. Liew, S. Massar, M. McKague, and V. Scarani, Device-Independent State Estimation Based on Bell’s Inequalities, Physical Review A 80, 062327 (2009).

    doi:10.1103/PhysRevA.80.062327; arXiv:0907.2170 [quant-ph]

  2. S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-Independent Quantum Key Distribution Secure Against Collective Attacks, New Journal of Physics 11, 045021 (2009).

    doi:10.1088/1367-2630/11/4/045021; arXiv:0903.4460 [quant-ph]

2008

  1. A. T. Nguyen, J. Frison, K. Phan Huy, and S. Massar, Experimental Quantum Tossing of a Single Coin, New Journal of Physics 10, 083037 (2008).

    doi:10.1088/1367-2630/10/8/083037; arXiv:0804.4411 [quant-ph]

  2. S. Massar and P. Spindel, Uncertainty Relation for the Discrete Fourier Transform, Physical Review Letters 100, 190401 (2008).

    doi:10.1103/PhysRevLett.100.190401; arXiv:0710.0723 [quant-ph]

2007

  1. S. Massar, Uncertainty Relations for Positive-Operator-Valued Measures, Physical Review A 76, 042114 (2007).

    doi:10.1103/PhysRevA.76.042114; arXiv:quant-ph/0703036

  2. A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-Independent Security of Quantum Cryptography Against Collective Attacks, Physical Review Letters 98, 230501 (2007).

    doi:10.1103/PhysRevLett.98.230501; arXiv:quant-ph/0702152

2006

  1. S. Massar and P. Spindel, Einstein-Podolsky-Rosen Correlations between Two Uniformly Accelerated Oscillators, Physical Review D 74, 085031 (2006).

    doi:10.1103/PhysRevD.74.085031; arXiv:hep-th/0606174

  2. A. Acín, S. Massar, and S. Pironio, Efficient Quantum Key Distribution Secure Against No-Signalling Eavesdroppers, New Journal of Physics 8, 126 (2006).

    doi:10.1088/1367-2630/8/8/126; arXiv:quant-ph/0605246

  3. H. Buhrman, P. Høyer, H. Röhrig, and S. Massar, Multipartite Nonlocal Quantum Correlations Resistant To Imperfections, Physical Review A 73, 012321 (2006).

    doi:10.1103/PhysRevA.73.012321; arXiv:quant-ph/0410139

2005

  1. H. Buhrman and S. Massar, Causality and Tsirelson’s Bounds, Physical Review A 72, 052103 (2005).

    doi:10.1103/PhysRevA.72.052103; arXiv:quant-ph/0409066

  2. S. Popescu, B. Groisman, and S. Massar, Lower Bound on the Number of Toffoli Gates in a Classical Reversible Circuit through Quantum Information Concepts, Physical Review Letters 95, 120503 (2005).

    doi:10.1103/PhysRevLett.95.120503; arXiv:quant-ph/0407035

  3. G. Ivanyos, S. Massar, and A. B. Nagy, Quantum Computing on Lattices Using Global Two-Qubit Gates, Physical Review A 72, 022339 (2005).

    doi:10.1103/PhysRevA.72.022339; arXiv:quant-ph/0502142

  4. D. Collins, L. Diósi, N. Gisin, S. Massar, and S. Popescu, Quantum Gloves: Quantum States That Encode as Much As Possible Chirality and Nothing Else, Physical Review A 72, 022304 (2005).

    doi:10.1103/PhysRevA.72.022304; arXiv:quant-ph/0409221

  5. N. Gisin, N. Linden, S. Massar, and S. Popescu, Error Filtration and Entanglement Purification for Quantum Communication, Physical Review A 72, 012338 (2005).

    doi:10.1103/PhysRevA.72.012338; arXiv:quant-ph/0407021

  6. L.-P. Lamoureux, E. Brainis, N. J. Cerf, P. Emplit, M. Haelterman, and S. Massar, Experimental Error Filtration for Quantum Communication Over Highly Noisy Channels, Physical Review Letters 94, 230501 (2005).

    doi:10.1103/PhysRevLett.94.230501; arXiv:quant-ph/0407031

  7. N. J. Cerf, N. Gisin, S. Massar, and S. Popescu, Simulating Maximal Quantum Entanglement Without Communication, Physical Review Letters 94, 220403 (2005).

    doi:10.1103/PhysRevLett.94.220403; arXiv:quant-ph/0410027

  8. S. Massar and S. Popescu, Measurement of the Total Energy of an Isolated System by An Internal Observer, Physical Review A 71, 042106 (2005).

    doi:10.1103/PhysRevA.71.042106; arXiv:quant-ph/0412079

  9. N. S. Jones, N. Linden, and S. Massar, Extent of Multiparticle Quantum Nonlocality, Physical Review A 71, 042329 (2005).

    doi:10.1103/PhysRevA.71.042329; arXiv:quant-ph/0407018

  10. L. P. Lamoureux, E. Brainis, D. Amans, J. Barrett, and S. Massar, Provably Secure Experimental Quantum Bit-String Generation, Physical Review Letters 94, 050503 (2005).

    doi:10.1103/PhysRevLett.94.050503; arXiv:quant-ph/0408121

2021

  1. A. Lupo, L. Butschek, and S. Massar, Photonic Extreme Learning Machine Based on Frequency Multiplexing, Optics Express 29, 28257 (2021).

    doi:10.1364/OE.433535; arXiv:2107.04585 [cs.ET]

  2. S. Massar and S. Clemmen, Resource Efficient Single Photon Source Based on Active Frequency Multiplexing, Optics Letters 46, 2832 (2021).

    doi:10.1364/OL.428148; arXiv:2104.08491 [quant-ph]

  3. K. Reynkens, S. Clemmen, H. Zhao, A. Raza, T. Vanackere, A. Stassen, M. Van Daele, J. Dendooven, and R. Baets, Gold-Induced Photothermal Background in on-Chip Surface Enhanced Stimulated Raman Spectroscopy, Optics Letters 46, 953 (2021).

    doi:10.1364/ol.418527

2020

  1. K. Reynkens, S. Clemmen, A. Raza, H. Zhao, J. S.-D. Peñaranda, C. Detavernier, and R. Baets, Mitigation of Photon Background in Nanoplasmonic All-on-Chip Raman Sensors, Optics Express 28, 33564 (2020).

    doi:10.1364/oe.408638

  2. L. Butschek, A. Akrout, E. Dimitriadou, M. Haelterman, and S. Massar, Parallel Photonic Reservoir Computing Based on Frequency Multiplexing of Neurons, (2020).

    arXiv:2008.11247 [physics.optics]

  3. Y. Li, H. Zhao, A. Raza, S. Clemmen, and R. Baets, Surface-Enhanced Raman Spectroscopy Based on Plasmonic Slot Waveguides With Free-Space Oblique Illumination, IEEE Journal of Quantum Electronics 56, 1 (2020).

    doi:10.1109/jqe.2019.2946839

2019

  1. J. Pauwels, G. Verschaffelt, S. Massar, and G. Van der Sande, Distributed Kerr Non-Linearity in a Coherent All-Optical Fiber-Ring Reservoir Computer, Frontiers in Physics 7, 138 (2019).

    doi:10.3389/fphy.2019.00138; arXiv:1908.11210 [physics.app-ph]

  2. M. Van Daele, M. B. E. Griffiths, A. Raza, M. M. Minjauw, E. Solano, J.-Y. Feng, R. K. Ramachandran, S. Clemmen, R. Baets, S. T. Barry, C. Detavernier, and J. Dendooven, Near Room Temperature PE-ALD of Nanostructured Gold For Enhanced Raman Scattering, ECS Meeting Abstracts MA2019-02, 1156 (2019).

    doi:10.1149/ma2019-02/24/1156

  3. M. Van Daele, M. B. E. Griffiths, A. Raza, M. M. Minjauw, E. Solano, J.-Y. Feng, R. K. Ramachandran, S. Clemmen, R. Baets, S. T. Barry, C. Detavernier, and J. Dendooven, Plasma-Enhanced Atomic Layer Deposition of Nanostructured Gold Near Room Temperature, ACS Applied Materials & Interfaces 11, 37229 (2019).

    doi:10.1021/acsami.9b10848

  4. A. Raza, S. Clemmen, P. Wuytens, M. de Goede, A. S. K. Tong, N. Le Thomas, C. Liu, J. Suntivich, A. G. Skirtach, S. M. Garcia-Blanco, D. J. Blumenthal, J. S. Wilkinson, and R. Baets, High Index Contrast Photonic Platforms for on-Chip Raman Spectroscopy, Optics Express 27, 23067 (2019).

    doi:10.1364/oe.27.023067

  5. J. Losada, A. Raza, S. Clemmen, A. Serrano, A. Griol, R. Baets, and A. Martinez, SERS Detection via Individual Bowtie Nanoantennas Integrated in Si3N4 Waveguides, IEEE Journal of Selected Topics in Quantum Electronics 25, 1 (2019).

    doi:10.1109/jstqe.2019.2896200

  6. S. Robertson, C. Ciret, S. Massar, S.-P. Gorza, and R. Parentani, Four-Wave Mixing and Enhanced Analog Hawking Effect in a Nonlinear Optical Waveguide, Physical Review A 99, 043825 (2019).

    doi:10.1103/PhysRevA.99.043825; arXiv:1902.04352 [physics.optics]

  7. A. Hermans, M. Van Daele, J. Dendooven, S. Clemmen, C. Detavernier, and R. Baets, Integrated Silicon Nitride Electro-Optic Modulators With Atomic Layer Deposited Overlays, Optics Letters 44, 1112 (2019).

    doi:10.1364/ol.44.001112

2018

  1. A. Raza, S. Clemmen, P. Wuytens, M. Muneeb, M. Van Daele, J. Dendooven, C. Detavernier, A. Skirtach, and R. Baets, ALD Assisted Nanoplasmonic Slot Waveguide for on-Chip Enhanced Raman Spectroscopy, APL Photonics 3, 116105 (2018).

    doi:10.1063/1.5048266

  2. R. Ramanathan, M. Horodecki, H. Anwer, S. Pironio, K. Horodecki, M. Grünfeld, S. Muhammad, M. Bourennane, and P. Horodecki, Practical No-Signalling Proof Randomness Amplification Using Hardy Paradoxes and Its Experimental Implementation, (2018).

    arXiv:1810.11648 [quant-ph]

  3. S. Clemmen, A. Farsi, S. Ramelow, and A. L. Gaeta, All-Optically Tunable Buffer for Single Photons, Optics Letters 43, 2138 (2018).

    doi:10.1364/ol.43.002138

  4. C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, Frequency Multiplexing for Quasi-Deterministic Heralded Single-Photon Sources, Nature Communications 9, 847 (2018).

    doi:10.1038/s41467-018-03254-4; arXiv:1707.00048 [quant-ph]

2017

  1. P. Antonik, F. Duport, M. Hermans, A. Smerieri, M. Haelterman, and S. Massar, Online Training of an Opto-Electronic Reservoir Computer Applied to Real-Time Channel Equalization, IEEE Transactions on Neural Networks and Learning Systems 28, 2686 (2017).

    doi:10.1109/TNNLS.2016.2598655; arXiv:1610.06268 [cs.ET]

  2. P. Antonik, M. Haelterman, and S. Massar, Brain-Inspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems, Physical Review Applied 7, 054014 (2017).

    doi:10.1103/PhysRevApplied.7.054014; arXiv:1802.02026 [cs.NE]

  3. P. Antonik, M. Hermans, M. Haelterman, and S. Massar, Random Pattern and Frequency Generation Using a Photonic Reservoir Computer with Output Feedback, Neural Processing Letters 47, 1041 (2017).

    doi:10.1007/s11063-017-9628-0; arXiv:2012.10615 [cs.NE]

  4. P. Antonik, M. Haelterman, and S. Massar, Online Training for High-Performance Analogue Readout Layers in Photonic Reservoir Computers, Cognitive Computation 9, 297 (2017).

    doi:10.1007/s12559-017-9459-3; arXiv:2012.10613 [cs.NE]

2016

  1. M. Hermans, P. Antonik, M. Haelterman, and S. Massar, Embodiment of Learning in Electro-Optical Signal Processors, Physical Review Letters 117, 128301 (2016).

    doi:10.1103/PhysRevLett.117.128301; arXiv:1610.06269 [cs.ET]

  2. E. Dremetsika, B. Dlubak, S.-P. Gorza, C. Ciret, M.-B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, Measuring the Nonlinear Refractive Index of Graphene Using the Optical Kerr Effect Method, Optics Letters 41, 3281 (2016).

    doi:10.1364/OL.41.003281; arXiv:1607.00911 [physics.optics]

2015

  1. Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, and S. Massar, High-Performance Photonic Reservoir Computer Based on a Coherently Driven Passive Cavity, Optica 2, 438 (2015).

    doi:10.1364/OPTICA.2.000438; arXiv:1501.03024 [physics.optics]

2014

  1. F. Duport, A. Akrout, A. Smerieri, M. Haelterman, and S. Massar, Analog Input Layer for Optical Reservoir Computers, (2014).

    arXiv:1406.3238 [cs.ET]

  2. L. Olislager, E. Woodhead, K. Phan Huy, J.-M. Merolla, P. Emplit, and S. Massar, Creating and Manipulating Entangled Optical Qubits in The Frequency Domain, Physical Review A 89, 052323 (2014).

    doi:10.1103/PhysRevA.89.052323; arXiv:1403.0805 [quant-ph]

2013

  1. M. K. Patra, L. Olislager, F. Duport, J. Safioui, S. Pironio, and S. Massar, Experimental Refutation of a Class of ψ-Epistemic Models, Physical Review A 88, 032112 (2013).

    doi:10.1103/PhysRevA.88.032112; arXiv:1306.0414 [quant-ph]

  2. L. Olislager, J. Safioui, S. Clemmen, K. Phan Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, Silicon-on-Insulator Integrated Source Of Polarization-Entangled Photons, Optics Letters 38, 1960 (2013).

    doi:10.1364/OL.38.001960; arXiv:1304.0642 [quant-ph]

2012

  1. A. Smerieri, F. Duport, Y. Paquot, B. Schrauwen, M. Haelterman, and S. Massar, Analog Readout for Optical Reservoir Computers, in Advances in Neural Information Processing Systems 25 (NIPS 2012), edited by P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Vol. 25 (Curran Associates, Inc., 2012), pp. 953–961.

    https://proceedings.neurips.cc/paper/2012/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html; arXiv:1209.3129 [cs.ET]

  2. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, All-Optical Reservoir Computing, Optics Express 20, 22783 (2012).

    doi:10.1364/OE.20.022783; arXiv:1207.1619 [physics.optics]

  3. S. Clemmen, A. Perret, J. Safioui, W. Bogaerts, R. Baets, S.-P. Gorza, P. Emplit, and S. Massar, Low-Power Inelastic Light Scattering at Small Detunings In Silicon Wire Waveguides at Telecom Wavelengths, Journal of the Optical Society of America B 29, 1977 (2012).

    doi:10.1364/JOSAB.29.001977; arXiv:1101.5841 [quant-ph]

  4. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, and P. Kockaert, Z-Scan Measurement of the Nonlinear Refractive Index Of Graphene, Optics Letters 37, 1856 (2012).

    doi:10.1364/OL.37.001856; arXiv:1203.5527 [physics.optics]

  5. L. Olislager, I. Mbodji, E. Woodhead, J. Cussey, L. Furfaro, P. Emplit, S. Massar, K. Phan Huy, and J.-M. Merolla, Implementing Two-Photon Interference in the Frequency Domain with Electro-Optic Phase Modulators, New Journal of Physics 14, 043015 (2012).

    doi:10.1088/1367-2630/14/4/043015; arXiv:1107.5519 [quant-ph]

  6. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, Optoelectronic Reservoir Computing, Scientific Reports 2, 287 (2012).

    doi:10.1038/srep00287; arXiv:1111.7219 [cs.ET]

2011

  1. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, On-Chip Parametric Amplification with 265 DB Gain At Telecommunication Wavelengths Using CMOS-Compatible Hydrogenated Amorphous Silicon Waveguides, Optics Letters 36, 552 (2011).

    doi:10.1364/OL.36.000552; arXiv:1102.1026 [physics.optics]

2010

  1. S. Clemmen, A. Perret, S. K. Selvaraja, W. Bogaerts, D. van Thourhout, R. Baets, P. Emplit, and S. Massar, Generation of Correlated Photons in Hydrogenated Amorphous-Silicon Waveguides, Optics Letters 35, 3483 (2010).

    doi:10.1364/OL.35.003483; arXiv:1102.1030 [quant-ph]

  2. L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. Phan Huy, Frequency-Bin Entangled Photons, Physical Review A 82, 013804 (2010).

    doi:10.1103/PhysRevA.82.013804; arXiv:0910.1325 [quant-ph]

2009

  1. S. Clemmen, K. Phan Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, Continuous Wave Photon Pair Generation In Silicon-on-Insulator Waveguides and Ring Resonators, Optics Express 17, 16558 (2009).

    doi:10.1364/OE.17.016558; arXiv:0906.4688 [quant-ph]

2008

  1. A. T. Nguyen, J. Frison, K. Phan Huy, and S. Massar, Experimental Quantum Tossing of a Single Coin, New Journal of Physics 10, 083037 (2008).

    doi:10.1088/1367-2630/10/8/083037; arXiv:0804.4411 [quant-ph]

2007

  1. E. Brainis, S. Clemmen, and S. Massar, Spontaneous Growth of Raman Stokes and Anti-Stokes Waves In Fibers, Optics Letters 32, 2819 (2007).

    doi:10.1364/OL.32.002819; arXiv:0705.1274 [physics.optics]

  2. S. Massar and S. Popescu, Reducing Polarization Mode Dispersion with Controlled Polarization Rotations, New Journal of Physics 9, 158 (2007).

    doi:10.1088/1367-2630/9/6/158; arXiv:physics/0606028

2005

  1. D. Amans, E. Brainis, and S. Massar, Higher Order Harmonics of Modulational Instability, Physical Review E 72, 066617 (2005).

    doi:10.1103/PhysRevE.72.066617; arXiv:physics/0507189

  2. L.-P. Lamoureux, E. Brainis, N. J. Cerf, P. Emplit, M. Haelterman, and S. Massar, Experimental Error Filtration for Quantum Communication Over Highly Noisy Channels, Physical Review Letters 94, 230501 (2005).

    doi:10.1103/PhysRevLett.94.230501; arXiv:quant-ph/0407031

  3. D. Amans, E. Brainis, M. Haelterman, P. Emplit, and S. Massar, Vector Modulation Instability Induced by Vacuum Fluctuations in Highly Birefringent Fibers in the Anomalous-Dispersion Regime, Optics Letters 30, 1051 (2005).

    doi:10.1364/OL.30.001051; arXiv:physics/0502130

  4. L. P. Lamoureux, E. Brainis, D. Amans, J. Barrett, and S. Massar, Provably Secure Experimental Quantum Bit-String Generation, Physical Review Letters 94, 050503 (2005).

    doi:10.1103/PhysRevLett.94.050503; arXiv:quant-ph/0408121

2021

  1. A. Lupo, L. Butschek, and S. Massar, Photonic Extreme Learning Machine Based on Frequency Multiplexing, Optics Express 29, 28257 (2021).

    doi:10.1364/OE.433535; arXiv:2107.04585 [cs.ET]

2019

  1. J. Pauwels, G. Verschaffelt, S. Massar, and G. Van der Sande, Distributed Kerr Non-Linearity in a Coherent All-Optical Fiber-Ring Reservoir Computer, Frontiers in Physics 7, 138 (2019).

    doi:10.3389/fphy.2019.00138; arXiv:1908.11210 [physics.app-ph]

2018

  1. P. Antonik, M. Gulina, J. Pauwels, and S. Massar, Using a Reservoir Computer to Learn Chaotic Attractors, With Applications to Chaos Synchronization and Cryptography, Physical Review E 98, 012215 (2018).

    doi:10.1103/PhysRevE.98.012215; arXiv:1802.02844 [cs.NE]

2017

  1. P. Antonik, F. Duport, M. Hermans, A. Smerieri, M. Haelterman, and S. Massar, Online Training of an Opto-Electronic Reservoir Computer Applied to Real-Time Channel Equalization, IEEE Transactions on Neural Networks and Learning Systems 28, 2686 (2017).

    doi:10.1109/TNNLS.2016.2598655; arXiv:1610.06268 [cs.ET]

  2. P. Antonik, M. Haelterman, and S. Massar, Brain-Inspired Photonic Signal Processor for Generating Periodic Patterns and Emulating Chaotic Systems, Physical Review Applied 7, 054014 (2017).

    doi:10.1103/PhysRevApplied.7.054014; arXiv:1802.02026 [cs.NE]

  3. P. Antonik, M. Hermans, M. Haelterman, and S. Massar, Random Pattern and Frequency Generation Using a Photonic Reservoir Computer with Output Feedback, Neural Processing Letters 47, 1041 (2017).

    doi:10.1007/s11063-017-9628-0; arXiv:2012.10615 [cs.NE]

  4. P. Antonik, M. Haelterman, and S. Massar, Online Training for High-Performance Analogue Readout Layers in Photonic Reservoir Computers, Cognitive Computation 9, 297 (2017).

    doi:10.1007/s12559-017-9459-3; arXiv:2012.10613 [cs.NE]

2016

  1. M. Hermans, P. Antonik, M. Haelterman, and S. Massar, Embodiment of Learning in Electro-Optical Signal Processors, Physical Review Letters 117, 128301 (2016).

    doi:10.1103/PhysRevLett.117.128301; arXiv:1610.06269 [cs.ET]

2015

  1. Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, and S. Massar, High-Performance Photonic Reservoir Computer Based on a Coherently Driven Passive Cavity, Optica 2, 438 (2015).

    doi:10.1364/OPTICA.2.000438; arXiv:1501.03024 [physics.optics]

2014

  1. F. Duport, A. Akrout, A. Smerieri, M. Haelterman, and S. Massar, Analog Input Layer for Optical Reservoir Computers, (2014).

    arXiv:1406.3238 [cs.ET]

2013

  1. M. Massar and S. Massar, Mean-Field Theory of Echo State Networks, Physical Review E 87, 042809 (2013).

    doi:10.1103/PhysRevE.87.042809; arXiv:1210.8260 [nlin.CD]

2012

  1. A. Smerieri, F. Duport, Y. Paquot, B. Schrauwen, M. Haelterman, and S. Massar, Analog Readout for Optical Reservoir Computers, in Advances in Neural Information Processing Systems 25 (NIPS 2012), edited by P. L. Bartlett, F. C. N. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Vol. 25 (Curran Associates, Inc., 2012), pp. 953–961.

    https://proceedings.neurips.cc/paper/2012/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html; arXiv:1209.3129 [cs.ET]

  2. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, and S. Massar, All-Optical Reservoir Computing, Optics Express 20, 22783 (2012).

    doi:10.1364/OE.20.022783; arXiv:1207.1619 [physics.optics]

  3. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar, Optoelectronic Reservoir Computing, Scientific Reports 2, 287 (2012).

    doi:10.1038/srep00287; arXiv:1111.7219 [cs.ET]

2009

  1. P. van der Gulik, S. Massar, D. Gilis, H. Buhrman, and M. Rooman, The First Peptides: The Evolutionary Transition Between Prebiotic Amino Acids and Early Proteins, Journal of Theoretical Biology 261, 531 (2009).

    doi:10.1016/j.jtbi.2009.09.004; arXiv:0909.2832 [q-bio.BM]